

Watch Dog Timer (WDT) Driver Specification 1

Watch Dog Timer (WDT) Driver Specification

Revision 1.0
February 2006

Watch Dog Timer (WDT) Driver Specification 2

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in
medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation

 www.intel.com

 or call 1-800-548-4725

*Third-party brands and names are the property of their respective owners.

Copyright © Intel Corporation 2006.

Watch Dog Timer (WDT) Driver Specification 3

Table of Contents

1. Introduction ...4
1.1. Scope ..4
1.2. Reference Documents...4

2. Installing the Driver ...5
3. Interface with the Driver ..6

3.1. Symbolic Link ..6
3.2. Supported IOCTLs ..7

Watch Dog Timer (WDT) Driver Specification 4

1. Introduction
The Intel® 3100 Chipset Watch Dog Timer (WDT) is a kernel mode driver designed to run
on Microsoft* Windows* OS (XP*, Server 2003*, Vista*, and XP* Embedded) platforms.
When enabled, the WDT can generate an interrupt or reboot the system in the event of a
system lockup.

This WDT supports a number of IOCTL commands. These commands enable the
applications to access and control all the aspects of the WDT.

The WDT is located on the LPC bus. As such, it is not detected by the Plug-n-Play (PnP)
manager. To install the driver, the user must manually go through the “Add Device” wizard
in the Control Panel. Installation details are covered later in this document.

1.1. Scope
This document describes the methods to install and communicate with the WDT. A working
knowledge with Microsoft* Windows* device drivers is assumed.

1.2. Reference Documents
 Windows* XP 3790 DDK
 wdt.h

Watch Dog Timer (WDT) Driver Specification 5

2. Installing the WDT Driver
The WDT driver does not announce itself to the device manager.

To install the WDT driver:

Note: These instructions assume that you are in the default Microsoft XP* control panel
view.

1. Open Control Panel and click “Printers and Other Hardware”.
2. In the “See Also” box at the top left hand corner, click “Add Hardware”.
3. Click “Next” to look for hardware.
4. Click “Yes, I have already connected the hardware” and then click “Next”.
5. Scroll to the bottom of the “Installed hardware” list and select “Add a new hardware device”.
6. Click “Install the hardware that I manually select from a list” and then Click “Next”.
7. Click “Show All Devices” and then Click “Next”.
8. Click “Have Disk…”, point to the location where the WDT driver is stored and click “OK”.
9. Click on “Intel® 3100 Chipset Watch Dog Timer” and install.

Watch Dog Timer (WDT) Driver Specification 6

3. Interface with the Driver
The only supported driver communication method is through IOCTLs. The IOCTLs defined
in this section allow a user-mode application to access all the capabilities of the WDT.

3.1. Symbolic Link
The driver creates a named device object that can be accessed through the symbolic link
"\\\\.\\SAWD1”. As such, the application can communicate with the driver by obtaining a handle
from CreateFile() with the path, “\\\\.\\SAWD1”.

Figure 1: Getting a handle to the WDT driver

Once a handle is obtained successfully, the application uses the DeviceIoControl() function to
communicate with the driver.

Figure 2: Sending an IOCTL command to the driver

/* Example: Getting a handle to the WDT driver */

HANDLE handle_to_wdt;

handle_to_wdt = CreateFile(
 “\\\\.\\SAWD1”,
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);

/* Example: Sending an IOCTL to the driver. Here we assume
 * handle_to_wdt was obtained successfully
 */

BOOL status;
int return_length;

status = DeviceIoControl(
 handle_to_wdt, /* handle to wdt */
 IOCTL_ENABLE_WDT,/* IOCTL to send */
 NULL, /* no input buffer */
 0, /* input length = 0 */
 NULL, /* no output buffer */
 0, /* output length = 0 */
 &return_length, /* should be 0 */
 NULL); /* wait until I/O completes */

Watch Dog Timer (WDT) Driver Specification 7

3.2. Supported IOCTLs

IOCTL_GET_CAPABILITIES
#define IOCTL_GET_CAPABILITIES \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x802, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts a buffer of type PSAWD_CAPABILITY_OUT_BUFF, and fills in the min and
max field, indicating the minimum and maximum downcounter value. The Version field will be set
to 1.

typedef struct _SAWD_CAPABILITY_OUT_BUFF {

unsigned long Version; /* version of interface used */
 unsigned long min; /* minimum value in msecs */
 unsigned long max; /* maximum value in msecs */

} SAWD_CAPABILITY_OUT_BUFF, *PSAWD_CAPABILITY_OUT_BUFF;

IOCTL_ENABLE_WDT
#define IOCTL_ENABLE_WDT \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D00, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL enables the Watch Dog Timer.

IOCTL_DISABLE_WDT
#define IOCTL_DISABLE_WDT \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D01, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL disables the Watch Dog Timer.

 IOCTL_LOAD_COUNTER
#define IOCTL_LOAD_COUNTER \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D02, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts a buffer of type PSAWD_CTRL, and loads the preload counter 1 and 2 using
the data in the Preload1 and Preload2 fields.

typedef struct _SAWD_CTRL {

 HANDLE UserEvent; /* Handle to a Ring 3 user event */
 unsigned long Version; /* version of interface used */
 unsigned long Flags; /* flags defined below */
 unsigned long Preload1; /* Preload register # 1 */
 unsigned long Preload2; /* Preload Register # 2 */
 unsigned long DownCount; /* Holds current down count */

Watch Dog Timer (WDT) Driver Specification 8

 unsigned long ConfigReg; /* 16 bit Configuation register */
 unsigned short DeviceStatus; /* store device status bits */
 unsigned short ReloadReg; /* 16 bit reload register */
 unsigned short LockReg; /* 8 bit Lock register */
 unsigned long InterruptCount; /* # of times stage 1 INT occured */
 unsigned short IRQ;
 short BusType;
 unsigned short BusNumber;
 unsigned short IrqOffset;

} SAWD_CTRL, *PSAWD_CTRL;

IOCTL_PING_THE_WDT
#define IOCTL_PING_THE_WDT \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D02, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL reloads the Watch Dog Timer’s down-counter with the preload value to prevent a
timeout. If the WDT is in stage 1 of the countdown, then preload value 1 will be loaded into the main
down counter. If the WDT is in stage 2 of the countdown, then preload value 2 will be loaded into the
main down counter.

IOCTL_SET_PRESCALAR
#define IOCTL_SET_PRESCALAR \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D04, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL sets how the 20-bit preload value will be loaded into the 35-bit down counter. The
IOCTL accepts an unsigned long integer set to 0 or 1 in the input buffer. If the input is 0, then the
20-bit preload value will be counted down at 1KHz. If the input is 1, then the 20-bit preload value will
be counted down at 1MHz.

IOCTL_READ_DOWN_COUNTER
#define IOCTL_READ_DOWN_COUNTER \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D05, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL returns the current value of the down counter (in an unsigned long integer).

IOCTL_SET_EXTERNAL_OUT
#define IOCTL_SET_EXTERNAL_OUT \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D07, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL enables or disables the external out pin when stage 2 time out occurs. This function
accepts an unsigned long integer set to 0 (enable) or 1 (disable).

Watch Dog Timer (WDT) Driver Specification 9

IOCTL_LOCK_DEVICE
#define IOCTL_LOCK_DEVICE \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D08, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL locks the WDT device. Once locked, the state (WDT mode vs. free running mode, and
Enabled vs. Disabled) of the Watch Dog Timer cannot be changed until the system resets.

IOCTL_ROUTE_INTERRUPT
#define IOCTL_ROUTE_INTERRUPT \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D09, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts an unsigned long integer, sets to 0-3, and uses it to set the type of interrupt to
trigger when stage 1 timer expires.

0 sets interrupt type to PCI
1 sets interrupt type to NMI
2 sets interrupt type to SMI
3 disables stage 1 interrupt

IOCTL_USER_HANDLE
#define IOCTL_USER_HANDLE \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D0D, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts a buffer of type PSAWD_CTRL, and creates an internal reference to the
function specified by the UserEvent field. When a stage 2 timeout occurs, the driver will call this
function.

IOCTL_TEST_CALLBACK
#define IOCTL_TEST_CALLBACK \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D0F, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL is used for testing the event handling code and to verify that the application thread is
released when the shared UserEvent is signaled by the WDT driver. This IOCTL exists mainly for
application developers to debug their application.

IOCTL_GET_STATUS
#define IOCTL_GET_STATUS \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D13, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts a buffer of type PSAWD_CTRL, and fills the ConfigReg and LockReg fields
with the current values of those two registers.

Watch Dog Timer (WDT) Driver Specification 10

IOCTL_GET_STATUS
#define IOCTL_SET_MODE \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D15, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts an unsigned long integer, sets to 0 or 1, and uses it to set the WDT mode. If the
input is 0, then the WDT is set to Watch Dog Timer mode. If the input is 1, then the WDT is set to
free running mode.

IOCTL_GET_TIMEOUT_STATUS
#define IOCTL_GET_TIMEOUT_STATUS \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D16, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts an unsigned long integer and uses it as both input and output.

As an input parameter, if the integer is set to 1, then the time out bit on the WDT device will
be reset.

As an output parameter, the integer is set to 1 if both stage 1 and stage 2 timers have expired.

IOCTL_GET_STAGE_1_TIMEOUT_STATUS
#define IOCTL_GET_STAGE_1_TIMEOUT_STATUS \
 CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0D17, \
 METHOD_BUFFERED, FILE_ANY_ACCESS)

This IOCTL accepts an unsigned long integer and uses it as both input and output.

As an input parameter, if the integer is set to 1, then the time out bit on the WDT device will
be reset.

As an output parameter, the integer is set to 1 if the stage 1 timer has expired.

