
Digital Future Text-to-Speech Programmer’s Guide for
Java (TM)

Version 3.5.0

The software described in this manual is furnished under a valid license agreement or

nondisclosure agreement with Digital Future and/or NeoSpeech Inc and/or Cepstral LLC. The

software may be used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2008 Digital Future.

Other trademarks and copyrights belong to Voiceware Co., Ltd., Pentax, Cepstral LLC and

NeoSpeech, Inc.

All Rights Reserved.

Disclaimer

DIGITAL FUTURE SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR

OMISSIONS CONTAINED HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES

RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. THE

INFORMATION IN THIS MANUAL IS SUBJECT TO CHANGE WITHOUT ANY PRIOR NOTICE FOR

THE PURPOSES OF IMPROVING THE PERFORMANCE AND FUNCTIONALITY OF ITS PRODUCTS.

No one is allowed to copy or distribute the whole or a part of this document without prior

written permission of Digital Future.

Trademark

VoiceText is the registered trademark of Voiceware Co., Ltd.

Product names mentioned herein may be trademarks and/or registered trademarks of their

respective trademark holders.

Chapter 1: Overview

Digital Future Text-to-Speech SDK (DF TTS SDK) is the only true OS native (no COM/ActiveX,

client-server, etc overheads) cross-platform provider-independent technology that provides

standardized and unified API’s for the implementation of the conversion of text data into

speech.

The currently supported technologies are:

• Voiceware Co., Ltd. VoiceText™ for U.S. English, Chinese, Japanese, Korean

• Cepstral LLC for U.S. English, U.K. English, French, German, Spanish, Italian

• AT&T Natural Voices ™ (for internal use only and not covered by the license of this SDK.

If you are interested in using this technology, you must obtain developer licensing from

AT&T directly. Please contact us at sales@digitalfuturesoft.com for details.)

• Mac OS X Speech Manager

• Microsoft ® Speech API 5.x

This document contains descriptions and examples of DF TTS SDK API’s, necessary for

developing text-to-speech enabled software applications in Java.

Appendix 2 of the present manual includes explanations on the DF TTS SDK Tag Set, which

controls inflection information (pitch, sound speed, volume, pause) as well as the SSML Tag

Set, one of the VoiceXML 2.0 standards defined by W3C (World Wide Web Consortium).

Supported platforms: Microsoft ® Windows ™ (all versions), Windows Mobile (2003 and up

with C++ and .NET), Mac OS X and Linux.

Supported Java compilers/IDE’s: Any Java compiler/IDE.

Sample built using: Eclipse Ganymede

Version of JRE/JDK used for sample: JRE/JDK 1.6.0_06

JNI layer library built with: Microsoft ® Visual C++ 2005 (on Windows), XCode (on Mac OS

X), gcc (on Linux).

Chapter 2: Getting Started

DF TTS SDK API’s are aimed at facilitating the integration of text-to-speech technology in

software applications.

I. Setup Notes.

Microsoft ® Windows ™ SDK setup notes:

1. The following DLL's must be distributed with the application:

dfttsjni.dll;

dftts.dll;

vt_eng.dll;

vt_chi.dll;

vt_jpn.dll;

vt_kor.dll;

swift.dll;

Note: All the above Dll’s are located in the Windows\Java\Dll\Release... folder.

Important Note: You must put the all the above Dll's in any java.library.path directory or just

add a desired directory with all above Dll's in it to the SYSTEM PATH and restart the computer.

Mac OS X SDK setup notes:

1. The developer must place the following JNI library into any java.library.path

directory (e.g. /Library/Java/Extensions):

libdfttsjni.jnilib

Note: The above JNI library is located in the MacOSX\Java\JNILib folder.

2. The following frameworks must be placed in /Library/Frameworks then distributed

with your application:

dfttssdk.framework (located in the ...Frameworks/Release... folder for your programming

language);

swift.framework (located in the ...Frameworks/Release... folder for your programming

language);

Linux x86 setup notes:

1. The following libraries must be distributed with the application:

libdfttsjni.so (JNI library)

libswift.so (Cepstral engine main library)

libceplang....so (Cepstral engine language library)

libceplex....so (Cepstral engine lexicon library)

Note 1: The above JNI library is located in the Linux\Java\Lib\Release... folder.

Note 2: The above Cepstral libraries will be located on the machine after a Cepstral voice

installation (/opt/swift/lib directory by default). The “...” in the language and lexicon library

names stands for the language part abbreviation of the library, where “en” will be English. If

you use other languages, the corresponding language libraries must be also included.

Important Note: You must put the all the above libraries in any java.library.path directory or

just add a desired directory with all above libraries in it to the SYSTEM PATH and restart the

computer.

2. At least 1 voice for Linux must be installed. See the download instructions or see

READMEFIRST!!!.TXT for available voice downloads.

Important Note for all OS: The SDK is accessed through a native JNI layer library.

See http://java.sun.com/docs/books/jni/html/jniTOC.html for more information.

II. Java (TM) Layer Class

1. You must create a Java class with the name JNILayer with an SDK-required

minimum declaration (see Appendix 1).

2. In your main code you must instantiate the class JNILayer and call its methods

when necessary (see sample).

Chapter 3: DF TTS SDK Function References

This chapter describes DF TTS SDK Function References, which can be divided into 4 categories.

• Basic API’s (loading/unloading the synthesis engine and the User Dictionary, language

helper functions, capturing events)

InitDFTTSEngineEx3()

UninitDFTTSEngine()

MakeLanguage()

GetMainLanguage()

GetSubLanguage()

LoadDFTTSUserDict()

UnloadDFTTSUserDict()

onWord()

onExport()

• Sound Card API’s (Play/Stop/Pause/Resume of synthesized sound output via sound card)

DFTTSSpeak()

DFTTSStop()

DFTTSPause()

DFTTSResume()

• File API’s (Synthesize and save to a voice file)

DFTTSExportToFileEx()

• Buffering API’s (Synthesize to a voice buffer)

DFTTSExportToBuffer() (not currently supported by the Desktop SDK)

• Information API’s (Get Voice Information)

GetDFTTSVoice()

InitDFTTSEngineEx3

Loads the synthesizer’s TTS database.

Synopsis
public native void InitDFTTSEngineEx3(int hwndWinOwner,

 String szNeoSpeechDBFolderPathKate,
 String szNeoSpeechDBFolderPathPaul,
 String szNeoSpeechDBFolderPathMiyu,
 String szNeoSpeechDBFolderPathShow,
 String szNeoSpeechDBFolderPathMisaki,
 String szNeoSpeechDBFolderPathLily,
 String szNeoSpeechDBFolderPathWang,
 String szNeoSpeechDBFolderPathJunwoo,
 String szNeoSpeechDBFolderPathSujin,
 String szNeoSpeechDBFolderPathYumi,
 String szNeoSpeechDBFolderPathGyuri,
 String szNeoSpeechDBFolderPathDayoung,
 String szNeoSpeechLicFilePathKate,
 String szNeoSpeechLicFilePathPaul,
 String szNeoSpeechLicFilePathMiyu,
 String szNeoSpeechLicFilePathShow,
 String szNeoSpeechLicFilePathMisaki,
 String szNeoSpeechLicFilePathLily,
 String szNeoSpeechLicFilePathWang,
 String szNeoSpeechLicFilePathJunwoo,
 String szNeoSpeechLicFilePathSujin,
 String szNeoSpeechLicFilePathYumi,
 String szNeoSpeechLicFilePathGyuri,
 String szNeoSpeechLicFilePathDayoung,
 int[] psiLoadedEngines,
 int[] psiLoadedEnginesReturnValues
);

Parameters
hwndWinOwner

Ignored for Java. Set to 0.

12 szNeoSpeechDBFolderPath[VoiceName] parameters

The paths where the NeoSpeech synthesizer databases are located for the supported

NeoSpeech voices.

12 szNeoSpeechLicFilePath[VoiceName] parameters

NeoSpeech VoiceText ™ License verification files for the indicated voices

[IN] psiLoadedEngines

An array with currently used engine types.

[IN] psiLoadedEnginesReturnValues

An array with the load status return values for each engine.

Note: All other vendors’ voices are automatically loaded and you do not need to specify DB

paths for them.

Description
The function loads the synthesizer database and it is used when the program starts.

Return Values
None

Notes
The return status values are held by 2 arrays.

The array psiLoadedEngines has member values NEOSPEECHVOICETEXT (0) (first 12 members

to match with the 12 NeoSpeech voices supported), CEPSTRAL (1) for the whole Cepstral

engine (member # 13), ATTNV (2) for the whole ATTNV engine (member # 14 (internal use only)),

MACOSXSPMAN (4) for the whole MACOSXSPMAN engine (member # 15) and MSSAPI (3) for

the whole MSSAPI engine (member # 16).

The first 12 members of psiLoadedEnginesReturnValues (psiLoadedEnginesReturnValues[0]

through [11]) return the load status of each supported NEOSPEECHVOICETEXT voice in the load

order (see Parameters section).

The thirteenth member of psiLoadedEnginesReturnValues (psiLoadedEnginesReturnValues [12])

returns the load status of the whole engine CEPSTRAL.

The fourteenth member (psiLoadedEnginesReturnValues [13]) returns the load status of the

whole engine ATTNV.

The fifteenth member (psiLoadedEnginesReturnValues [14]) returns the load status of the

whole engine MACOSXSPMAN.

The sixteenth member (psiLoadedEnginesReturnValues [15]) returns the load status of the

whole engine MSSAPI.

See the Java (TM) sample for further clarification.

Each member of psiLoadedEnginesReturnValues can hold the following status codes:

When the database is successfully loaded, it returns 0 (Success). The following common values

are returned when error occurs:

[1] Tried to load the synthesizer database with different values of szNeoSpeechDBFolderPath in

case of using multiple synthesizer databases

[2] Failed to secure channel memory

[3] Failed to load DB for the Morpheme Analysis

[4] Failed to load DB for the Break Index

[5] Failed to load DB for the Text Pre-Processing

[6] Failed to load DB for the Acoustic Model

[7] Failed to load DB for Unit Selection

[8] Failed to load DB for Prosody Model

[9] Failed to load DB for Speech Database

[10] Failed to load DB for Pitch Location Information

.

.

.

[78] Other errors

See Also
UninitDFTTSEngine()

Example (taken from the Java sample)

 private JNILayer JNILayer;

public Frame1() {

JNILayer = new JNILayer();

JNILayer.setFrame(this);

//Initialize the SDK

int[] iLoadedEngines;

 int[] iLoadedEnginesReturnValues;

iLoadedEngines = new int[NUM_ENGINE_INITIALIZATIONS];

iLoadedEnginesReturnValues = new int[NUM_ENGINE_INITIALIZATIONS];

String[] sNeoSpeechDBFolderPaths;

sNeoSpeechDBFolderPaths = new String[NEOSPEECH_NUM_VOICES];

String[] szNeoSpeechLicFilePaths;

szNeoSpeechLicFilePaths = new String[NEOSPEECH_NUM_VOICES];

for(int i = 0; i<NUM_ENGINE_INITIALIZATIONS-1; i++)
{

iLoadedEngines[i] = 0;
iLoadedEnginesReturnValues[i] = 0;

 if(i < NEOSPEECH_NUM_VOICES)
 {

 if(i == 1) //Paul (Windows only) - Change your paths accordingly!
 {

 sNeoSpeechDBFolderPaths[i]="C:\\Program
Files\\VW\\VT\\Paul\\M16";

 szNeoSpeechLicFilePaths[i]="C:\\Program

Files\\VW\\VT\\Paul\\M16\\data-common\\verify\\verification.txt";

 }
 else
 {

 sNeoSpeechDBFolderPaths[i]="";

 szNeoSpeechLicFilePaths[i]="";
 }

 }
}

JNILayer.InitDFTTSEngineEx3(0,

sNeoSpeechDBFolderPaths[0], //Kate
sNeoSpeechDBFolderPaths[1], //Paul
sNeoSpeechDBFolderPaths[2], //Miyu
sNeoSpeechDBFolderPaths[3], //Show
sNeoSpeechDBFolderPaths[4], //Misaki
sNeoSpeechDBFolderPaths[5], //Lily
sNeoSpeechDBFolderPaths[6], //Wang
sNeoSpeechDBFolderPaths[7], //Junwoo
sNeoSpeechDBFolderPaths[8], //Sujin
sNeoSpeechDBFolderPaths[9], //Yumi
sNeoSpeechDBFolderPaths[10], //Gyuri
sNeoSpeechDBFolderPaths[11], //Dayoung
szNeoSpeechLicFilePaths[0], //Kate
szNeoSpeechLicFilePaths[1], //Paul
szNeoSpeechLicFilePaths[2], //Miyu
szNeoSpeechLicFilePaths[3], //Show
szNeoSpeechLicFilePaths[4], //Misaki
szNeoSpeechLicFilePaths[5], //Lily
szNeoSpeechLicFilePaths[6], //Wang
szNeoSpeechLicFilePaths[7], //Junwoo
szNeoSpeechLicFilePaths[8], //Sujin
szNeoSpeechLicFilePaths[9], //Yumi
szNeoSpeechLicFilePaths[10], //Gyuri
szNeoSpeechLicFilePaths[11], //Dayoung

 iLoadedEngines,
 iLoadedEnginesReturnValues
);

 /*Catch load errors */

 String sEngineName = "";
 int result = 0;

 String[] sNeospVoiceNames = {
 NEOSPEECH_KATE_ENG_NAMESTR,
 NEOSPEECH_PAUL_ENG_NAMESTR,
 NEOSPEECH_MIYU_JPN_NAMESTR,
 NEOSPEECH_SHOW_JPN_NAMESTR,
 NEOSPEECH_MISAKI_JPN_NAMESTR,
 NEOSPEECH_LILY_CHI_NAMESTR,
 NEOSPEECH_WANG_CHI_NAMESTR,
 NEOSPEECH_JUNWOO_KOR_NAMESTR,
 NEOSPEECH_SUJIN_KOR_NAMESTR,
 NEOSPEECH_YUMI_KOR_NAMESTR,
 NEOSPEECH_GYURI_KOR_NAMESTR,
 NEOSPEECH_DAYOUNG_KOR_NAMESTR
 };

 for (int intI = 0; intI <= iLoadedEngines.length- 1; intI++)
 {

 if (iLoadedEngines[intI] == NEOSPEECHVOICETEXT)
 {

 sEngineName = "NEOPSEECHVOICETEXT Engine Load Result for voice " +
 sNeospVoiceNames[intI] + ": ";

 }
 else if (iLoadedEngines[intI] == CEPSTRAL)
 {

 sEngineName = "CEPSTRAL Engine Load Result: ";

 }
 else if (iLoadedEngines[intI] == ATTNV)
 {

 sEngineName = "ATTNV Engine (RESERVED INTERNAL USE) Load Result: ";

 }
 else if (iLoadedEngines[intI] == MACOSXSPMAN)
 {

 sEngineName = "MAC OS X SPMAN Load Result: ";

 }
 else if (iLoadedEngines[intI] == MSSAPI)
 {

 sEngineName = "MS SAPI Load Result: ";

 }

 result = iLoadedEnginesReturnValues[intI];

 System.out.println(sEngineName + result + '\n');

 }

}

UninitDFTTSEngine
Unloads the synthesizer’s DB

Synopsis
public native int UninitDFTTSEngine();

Parameters
None.

Description
The function frees the assigned memory by unloading the synthesizer DB’s and all internal

objects. For Java this function also clears the global JNI object reference.

It MUST be called before the program exits otherwise memory corruption will occur!

Return Values
0 (Success)

1 (Failed)

See Also
InitDFTTSEngineEx3()

Notes
Mac OS X Java (TM) users: In order to make sure the function is always called on exit, you

must capture the Mac OS X Quit event (System Menu>Mac Button + Q). You must implement

an “OSXAdapter”. See folder MacOSX/Java/Sample/OSXAdapter for the example from Apple.

Example (see sample)
private void thisWindowClosing(WindowEvent e) {

/*********************************
* IMPORTANT FOR MAC OS X USERS!
*
* JNILayer.UninitDFTTSEngine();
*
* MUST ALSO BE CALLED WHEN THE APP QUITS (WHEN THE USER PRESSES MAC BUTTON + Q)!
*
* SEE THE SAMPLE PACKAGE FROM APPLE IN FOLDER OSXAdapter ON HOW TO CAPTURE THE QUIT EVENT FOR MAC OS X
*
* THE SAMPLE IS MADE CROSS-PLATFORM AS IT CHECKS FOR THE OS NAME
*
*/

JNILayer.UninitDFTTSEngine();

System.out.println("Speech SDK Memory Released!");

System.exit(0);

}

MakeLanguage
Creates a language id from a main language id and a sub-language id.

Synopsis
public native short MakeLanguage(short mainlang,

short sublang
);

Parameters
mainlang

The id of the main or primary language. See the Frame1.java in the sample for all language

constants.

sublang

The id of the sub-language. See the Frame1.java in the sample for all language constants.

Description
The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Return Values
The language id needed for the SDK.

See Also
GetMainLanguage()

GetSubLanguage()

GetMainLanguage
A Helper function that returns the main language id from a language id.

Synopsis
public native short GetMainLanguage(short lang);

Parameters
lang

The id of the language.

Description
The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Return Values
The id of the primary language used in the creation of the language id (lang parameter).

See Also
MakeLanguage()

GetSubLanguage()

GetSubLanguage
A Helper function that returns the sub-language id from a language id.

Synopsis
public native short GetSubLanguage(short lang);

Parameters
lang

The id of the language.

Description
The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Return Values
The id of the sub-language used in the creation of the language id (lang parameter).

See Also
MakeLanguage()

GetMainLanguage()

LoadDFTTSUserDict
Loads the User Dictionary.

Synopsis
public native int LoadDFTTSUserDict(int iDictIndex, String szDictName,
 String szDictFileName, int vet, short lang,
 String szVoiceName, String szDictContents);

Parameters
iDictIndex

Dictionary index in case of using more than one user dictionary (only valid for

NEOSPEECHVOICETEXT).

Default user dictionary uses the value of 0 and it can take the values between 1~1023.

szDictName

Dictionary name (only valid with engines MSSAPI and ATTNV (internal use only))

szDictFileName

The name of user dictionary file (only valid for NEOSPEECHVOICETEXT and CEPSTRAL).

vet

Load for the specified engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) or

MSSAPI (3)).

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

szVoiceName

Voice to load the dictionary for (only valid for CEPSTRAL, where the dictionary is loaded for a

voice).

szDictContents

Phoneme contents for the dictionary (only MSSAPI and ATTNV where instead of a dictionary file

we supply the actual character contents).

Description
This function loads the user dictionaries that are separate from and in addition to the default

dictionary that is included in the TTS DB.

This has to be used after the completion of the loading of the synthesizer DB’s. iDictIndex is

used during synthesis by NEOSPEECHVOICETEXT.

MACOSXSPMAN does not support user dictionaries through the SDK.

Note: For detailed instructions on how to build dictionaries for each engine provider, see

instructions provided with the SDK in folder DictionarySystems.

Return Values
0 is returned when user dictionary is successfully loaded. The following common error codes are

returned when errors occur:

[1] iDictIndex value is not within the valid range

[2] User dictionary file corresponding to iDictIndex is already loaded.

[3] Loading failed because there was no user dictionary files or valid entry.

[4] Invalid dictionary file.

[5] Invalid voice.

[6] Invalid phoneme set.

[7] Invalid phoneme.

[8] Other errors.

See Also
UnloadDFTTSUserDict()

Example (see sample)

int dictreturn = 0;

//User Dictionary Loading:
//(read dictionary documentation per engine located in folder DictionarySystems)

//This is how to load a dictionary for the NeoSpeech provider (the dictionary is loaded _
//by language from a file (the dict name, voice name, _
//dict content do NOT matter), the dictionary number matters)

//JNILayer.MakeLanguage(LANG_ENGLISH, SUBLANG_ENGLISH_US) = 1033 - You can just use 1033

// *** YOU MUST CHANGE THE DICTIONARY PATH TO MATCH YOURS! *** //

dictreturn = JNILayer.LoadDFTTSUserDict(1, "",
"C:\\CPP\\Projects\\DFTTSSDK\\samples\\Java\\DFTTSSDKSampleJava\\neospeech_userdict_eng.csv",
 NEOSPEECHVOICETEXT, JNILayer.MakeLanguage(LANG_ENGLISH, SUBLANG_ENGLISH_US),
 "", "");

//This is how to load a dictionary for the Cepstral provider (the dictionary is loaded
//by voice from a file.
//The dictionary number, dict name, dict content do NOT matter.)

dictreturn = JNILayer.LoadDFTTSUserDict(-1, "",
 "C:\\CPP\\Projects\\DFTTSSDK\\samples\\Java\\DFTTSSDKSampleJava\\cepstral_dictionary.txt",
 CEPSTRAL, LANG_SUBLANG_NEUTRAL, "David", "");

//MACOSXSPMAN: No dictionary support.

if (dictreturn != 0)
{
JOptionPane.showMessageDialog(this, "SDK Load Dictionary failed with error: " + dictreturn);
}

UnloadDFTTSUserDict
Unloads the User Dictionary.

Synopsis
public native int UnloadDFTTSUserDict(int iDictIndex, String szDictName,
 int vet, short lang);

Parameters
iDictIndex

Dictionary index in case of using more than one user dictionary (only valid for

NEOSPEECHVOICETEXT).

Default user dictionary uses the value of 0 and it can take the values between 1~1023.

szDictName

Dictionary name (only valid with engines MSSAPI and ATTNV (internal use only)).

vet

Unload for the specified engine type (NEOSPEECHVOICETEXT (0), ATTNV (2) or MSSAPI (3))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int ATTNV = 2;

public final int MSSAPI = 3;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Description
The function unloads the user dictionary.

Any user dictionary that has not been unloaded is automatically unloaded during the process of

unloading the synthesizer DB.

CEPSTRAL engine does not support user dictionary unloading. The dictionary data unloads with

the unloading the voice DB.

Return Values
0 is returned when user dictionary is successfully loaded. The following common error codes are

returned when errors occur:

[1] iDictIndex value is not within the valid range

[2] User dictionary file corresponding to iDictIndex is already unloaded.

See Also
LoadDFTTSUserDict()

onWord
Receives the speak event values of the current spoken word start and end characters (see

sample).

Synopsis
public void onWord(int start, int end)
{

//TODO: Enter your event handling code here

}

Parameters
[IN] start

The number of the start word character with regard to the whole text.

[IN] end

The number of the end word character with regard to the whole text.

Description
Receives the speak event values of the current spoken word start and end characters (see

sample).

When the speech is finished, start is 0 (zero) and end is -1.

MACOSXSPMAN: onExport event data is sent here (onWord). MACOSXSPMAN treats exports as

speech.

MSSAPI engine may not get the onWord even with Java (TM) due to Java (TM) message

handling irregularities.

Return Values
None.

See Also
onExport ()

Example (see sample)
//MACOSXSPMAN: onExport event data is sent here (onWord). MACOSXSPMAN treats exports as speech.

 public void onWord(int start, int end)
 {

 if(start==0 && end==-1)
 {
 frame.bIsSpeaking = false;
 frame.bIsPaused=false;

 if(frame.button2.isEnabled())
 frame.button2.setEnabled(false);

 if(frame.button3.isEnabled())
 frame.button3.setEnabled(false);

 }
 else
 {
 if(!frame.button2.isEnabled())
 frame.button2.setEnabled(true);

 if(!frame.button3.isEnabled())
 frame.button3.setEnabled(true);

 }

 frame.label1.setText("onWord: Start Character: " + start + ", End Character: " + end);

 }

onExport
Gets called by the JNI when the audio file synthesis is complete (see sample).

Synopsis
public void onExport(int start, int end)
{

//TODO: Enter your event handling code here

}

Parameters
[IN] start

Unused. Reserved.

[IN] end

Unused. Reserved.

Description
Gets called by the JNI when the audio file synthesis is complete (see sample).

The onExport with MACOSXSPMAN is treated as and onWord event so do not use this function

with MACOSXSPMAN.

Return Values

None.

See Also
onWord ()

Example (see sample)
//MACOSXSPMAN: Do not use. Event data is sent to onWord
public void onExport(int start, int end)
{

//start and end are SDK-reserved

frame.label1.setText("onExport: Export successful!");

}

DFTTSSpeak

It plays synthesized TTS output through a sound card.

Synopsis
public native int DFTTSSpeak(int hwndWinOwner, int vet,

String szVoiceName, int iVoiceID, short lang, String szText, int iPitch,
int iSpeed, int iVolume, int iPause, int iDictID, int ttTextType,
short ofOutPutFormat);

Parameters
hwndWinOwner

Ignored for Java. Set to 0.

vet

Which engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) (internal use only),

MSSAPI (3) or MACOSXSPMAN (4))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

public final int MACOSXSPMAN = 4;

szVoiceName

Internal voice name (matters for CEPSTRAL, ATTNV, MSSAPI and MACOSXSPMAN). Example:

“David” or “Mike16”.

iVoiceID

Internal voice id (matters for NEOSPEECHVOICETEXT).

Use the following values (see sample):

 public final int NEOSPEECH_KATE_ENG = 0;

 public final int NEOSPEECH_PAUL_ENG = 1;

 public final int NEOSPEECH_MIYU_JPN = 0;

 public final int NEOSPEECH_SHOW_JPN = 1;

 public final int NEOSPEECH_MISAKI_JPN = 2;

 public final int NEOSPEECH_LILY_CHI = 0;

 public final int NEOSPEECH_WANG_CHI = 1;

 public final int NEOSPEECH_JUNWOO_KOR = 3;

 public final int NEOSPEECH_SUJIN_KOR = 8;

 public final int NEOSPEECH_YUMI_KOR = 10;

 public final int NEOSPEECH_GYURI_KOR = 11;

 public final int NEOSPEECH_DAYOUNG_KOR = 12;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

szText

Text string to be synthesized (No size limit).

iPitch

Defines the pitch of synthesized voice.

The default value is set to 100(%). The possible pitch range varies depending on the engine

type (see below). ATTNV does not support pitch modifications by design.

For –1, use default value.

iSpeed

Defines the speed of synthesized voice. The default value is set to 100%. The range varies

depending on the engine type (see below).

For –1, use default value.

iVolume

Defines the volume of synthesized voice. The default value is set to 100%. The range varies

depending on the engine type (see below).

For –1, use default value.

iPause

Defines the length of pause between sentences of synthesized voice (NEOSPEECHVOICETEXT

ONLY). The default value is set to 670(msec). The range is 0~20000(msec) and the lower value

indicates shorter pause.

For –1, use default value

The following declarations (see sample) outline the default values and supported ranges

between engines:

public final int DF_TTS_DEFAULT_PITCH = 100; /*100%*/
public final int DF_TTS_DEFAULT_SPEED = 100; /*100%*/
public final int DF_TTS_DEFAULT_VOLUME = 100; /*100%*/
public final int DF_TTS_DEFAULT_PAUSE = 670; /*670 msec*/
public final int DF_TTS_NEOSPEECH_MIN_PITCH = 50;
public final int DF_TTS_NEOSPEECH_MAX_PITCH = 200;
public final int DF_TTS_NEOSPEECH_MIN_SPEED = 50;
public final int DF_TTS_NEOSPEECH_MAX_SPEED = 400;
public final int DF_TTS_NEOSPEECH_MIN_VOLUME = 0;
public final int DF_TTS_NEOSPEECH_MAX_VOLUME = 500;
public final int DF_TTS_NEOSPEECH_MIN_PAUSE = 0;
public final int DF_TTS_NEOSPEECH_MAX_PAUSE = 20000;
public final int DF_TTS_CEPSTRAL_MIN_PITCH = 100;
public final int DF_TTS_CEPSTRAL_MAX_PITCH = 500;
public final int DF_TTS_CEPSTRAL_MIN_SPEED = 0;
public final int DF_TTS_CEPSTRAL_MAX_SPEED = 400;
public final int DF_TTS_CEPSTRAL_MIN_VOLUME = 0;
public final int DF_TTS_CEPSTRAL_MAX_VOLUME = 500;
public final int DF_TTS_ATTNV_MIN_SPEED = 13;
public final int DF_TTS_ATTNV_MAX_SPEED = 800;
public final int DF_TTS_ATTNV_MIN_VOLUME = 0;
public final int DF_TTS_ATTNV_MAX_VOLUME = 500;
public final int DF_TTS_ATTNV_MIN_PITCH = 0; /*AT&T NV do not support

this*/
public final int DF_TTS_ATTNV_MAX_PITCH = 0; /*AT&T NV do not support

this*/
public final int DF_TTS_MACOSXSPMAN_MIN_PITCH = 1;
public final int DF_TTS_MACOSXSPMAN_MAX_PITCH = 1000;
public final int DF_TTS_MACOSXSPMAN_MIN_SPEED = 1;
public final int DF_TTS_MACOSXSPMAN_MAX_SPEED = 1000;
public final int DF_TTS_MACOSXSPMAN_MIN_VOLUME = 100;
public final int DF_TTS_MACOSXSPMAN_MAX_VOLUME = 500;
public final int DF_TTS_MSSAPI_MIN_PITCH = 30;
public final int DF_TTS_MSSAPI_MAX_PITCH = 350;
public final int DF_TTS_MSSAPI_MIN_SPEED = 30;
public final int DF_TTS_MSSAPI_MAX_SPEED = 350;
public final int DF_TTS_MSSAPI_MIN_VOLUME = 0;

public final int DF_TTS_MSSAPI_MAX_VOLUME = 100;

iDictID

ID of the user dictionary when multiple user dictionaries are in use. The default user’s uses

value 0 and the range is between 1~1023 (ONLY applicable with NEOSPEECHVOICETEXT).

For –1, use default value.

ttTextType

Defines the text type to be synthesized.

Use the following values (see sample):

public final short DFTTS_TEXT_TYPE_PLAIN = 0;

public final short DFTTS_TEXT_TYPE_XML = 1;

For regular text, use DFTTS_TEXT_TYPE_PLAIN, and for VoiceXML/SSML text, use

DFTTS_TEXT_TYPE_XML. The value of –1 is regarded as regular text.

ofOutPutFormat

Speech output format (MSSAPI only). If -1 uses the value of the previously set format even

through the export function.

Therefore, with MSSAPI it is always recommended to set this value (see sample).

Possible values are defined by the following constants (see sample):

public final short SPSF_Default = -1;
public final short SPSF_NoAssignedFormat = 0;
public final short SPSF_Text = SPSF_NoAssignedFormat + 1;
public final short SPSF_NonStandardFormat = SPSF_Text + 1;
public final short SPSF_ExtendedAudioFormat = SPSF_NonStandardFormat + 1;
public final short SPSF_8kHz8BitMono = SPSF_ExtendedAudioFormat + 1;
public final short SPSF_8kHz8BitStereo = SPSF_8kHz8BitMono + 1;
public final short SPSF_8kHz16BitMono = SPSF_8kHz8BitStereo + 1;
public final short SPSF_8kHz16BitStereo = SPSF_8kHz16BitMono + 1;
public final short SPSF_11kHz8BitMono = SPSF_8kHz16BitStereo + 1;
public final short SPSF_11kHz8BitStereo = SPSF_11kHz8BitMono + 1;
public final short SPSF_11kHz16BitMono = SPSF_11kHz8BitStereo + 1;
public final short SPSF_11kHz16BitStereo = SPSF_11kHz16BitMono + 1;
public final short SPSF_12kHz8BitMono = SPSF_11kHz16BitStereo + 1;
public final short SPSF_12kHz8BitStereo = SPSF_12kHz8BitMono + 1;
public final short SPSF_12kHz16BitMono = SPSF_12kHz8BitStereo + 1;
public final short SPSF_12kHz16BitStereo = SPSF_12kHz16BitMono + 1;
public final short SPSF_16kHz8BitMono = SPSF_12kHz16BitStereo + 1;
public final short SPSF_16kHz8BitStereo = SPSF_16kHz8BitMono + 1;
public final short SPSF_16kHz16BitMono = SPSF_16kHz8BitStereo + 1;
public final short SPSF_16kHz16BitStereo = SPSF_16kHz16BitMono + 1;
public final short SPSF_22kHz8BitMono = SPSF_16kHz16BitStereo + 1;
public final short SPSF_22kHz8BitStereo = SPSF_22kHz8BitMono + 1;
public final short SPSF_22kHz16BitMono = SPSF_22kHz8BitStereo + 1;
public final short SPSF_22kHz16BitStereo = SPSF_22kHz16BitMono + 1;
public final short SPSF_24kHz8BitMono = SPSF_22kHz16BitStereo + 1;
public final short SPSF_24kHz8BitStereo = SPSF_24kHz8BitMono + 1;
public final short SPSF_24kHz16BitMono = SPSF_24kHz8BitStereo + 1;
public final short SPSF_24kHz16BitStereo = SPSF_24kHz16BitMono + 1;
public final short SPSF_32kHz8BitMono = SPSF_24kHz16BitStereo + 1;
public final short SPSF_32kHz8BitStereo = SPSF_32kHz8BitMono + 1;
public final short SPSF_32kHz16BitMono = SPSF_32kHz8BitStereo + 1;
public final short SPSF_32kHz16BitStereo = SPSF_32kHz16BitMono + 1;
public final short SPSF_44kHz8BitMono = SPSF_32kHz16BitStereo + 1;

public final short SPSF_44kHz8BitStereo = SPSF_44kHz8BitMono + 1;
public final short SPSF_44kHz16BitMono = SPSF_44kHz8BitStereo + 1;
public final short SPSF_44kHz16BitStereo = SPSF_44kHz16BitMono + 1;
public final short SPSF_48kHz8BitMono = SPSF_44kHz16BitStereo + 1;
public final short SPSF_48kHz8BitStereo = SPSF_48kHz8BitMono + 1;
public final short SPSF_48kHz16BitMono = SPSF_48kHz8BitStereo + 1;
public final short SPSF_48kHz16BitStereo = SPSF_48kHz16BitMono + 1;
public final short SPSF_TrueSpeech_8kHz1BitMono = SPSF_48kHz16BitStereo + 1;
public final short SPSF_CCITT_ALaw_8kHzMono = SPSF_TrueSpeech_8kHz1BitMono + 1;
public final short SPSF_CCITT_ALaw_8kHzStereo = SPSF_CCITT_ALaw_8kHzMono + 1;
public final short SPSF_CCITT_ALaw_11kHzMono = SPSF_CCITT_ALaw_8kHzStereo + 1;
public final short SPSF_CCITT_ALaw_11kHzStereo = SPSF_CCITT_ALaw_11kHzMono + 1;
public final short SPSF_CCITT_ALaw_22kHzMono = SPSF_CCITT_ALaw_11kHzStereo + 1;
public final short SPSF_CCITT_ALaw_22kHzStereo = SPSF_CCITT_ALaw_22kHzMono + 1;
public final short SPSF_CCITT_ALaw_44kHzMono = SPSF_CCITT_ALaw_22kHzStereo + 1;
public final short SPSF_CCITT_ALaw_44kHzStereo = SPSF_CCITT_ALaw_44kHzMono + 1;
public final short SPSF_CCITT_uLaw_8kHzMono = SPSF_CCITT_ALaw_44kHzStereo + 1;
public final short SPSF_CCITT_uLaw_8kHzStereo = SPSF_CCITT_uLaw_8kHzMono + 1;
public final short SPSF_CCITT_uLaw_11kHzMono = SPSF_CCITT_uLaw_8kHzStereo + 1;
public final short SPSF_CCITT_uLaw_11kHzStereo = SPSF_CCITT_uLaw_11kHzMono + 1;
public final short SPSF_CCITT_uLaw_22kHzMono = SPSF_CCITT_uLaw_11kHzStereo + 1;
public final short SPSF_CCITT_uLaw_22kHzStereo = SPSF_CCITT_uLaw_22kHzMono + 1;
public final short SPSF_CCITT_uLaw_44kHzMono = SPSF_CCITT_uLaw_22kHzStereo + 1;
public final short SPSF_CCITT_uLaw_44kHzStereo = SPSF_CCITT_uLaw_44kHzMono + 1;
public final short SPSF_ADPCM_8kHzMono = SPSF_CCITT_uLaw_44kHzStereo + 1;
public final short SPSF_ADPCM_8kHzStereo = SPSF_ADPCM_8kHzMono + 1;
public final short SPSF_ADPCM_11kHzMono = SPSF_ADPCM_8kHzStereo + 1;
public final short SPSF_ADPCM_11kHzStereo = SPSF_ADPCM_11kHzMono + 1;
public final short SPSF_ADPCM_22kHzMono = SPSF_ADPCM_11kHzStereo + 1;
public final short SPSF_ADPCM_22kHzStereo = SPSF_ADPCM_22kHzMono + 1;
public final short SPSF_ADPCM_44kHzMono = SPSF_ADPCM_22kHzStereo + 1;
public final short SPSF_ADPCM_44kHzStereo = SPSF_ADPCM_44kHzMono + 1;
public final short SPSF_GSM610_8kHzMono = SPSF_ADPCM_44kHzStereo + 1;
public final short SPSF_GSM610_11kHzMono = SPSF_GSM610_8kHzMono + 1;
public final short SPSF_GSM610_22kHzMono = SPSF_GSM610_11kHzMono + 1;
public final short SPSF_GSM610_44kHzMono = SPSF_GSM610_22kHzMono + 1;
public final short SPSF_NUM_FORMATS = SPSF_GSM610_44kHzMono + 1;

Notes
The Java (TM) implementation has a problem with NEOSPEECHVOICETEXT when the voice is

speaking because of irregular Java (TM) window message handling and thread issues.

Therefore, you should not use the NEOSPEECHVOICETEXT engine with DFTTSSpeak. The

synthesis will be cut off and the engine processing thread will be terminated by the virtual

machine after a few seconds.

MSSAPI engine may not get the onWord even with Java (TM) due to Java (TM) message

handling irregularities.

Return Values
0 is returned when it was executed successfully. The following common error codes are

returned when errors occur:

[1] Failed to secure channel memory

[2] The text string is a NULL pointer

[3] The length of text string is 0

[4] The TTS DB of the voice requested is not loaded

[5] Failed to set the sound card

.

.

.

[101] Other errors

Example (see sample)
Object obj = comboBox1.getItemAt(comboBox1.getSelectedIndex());

VoiceData vo = (VoiceData)obj;

int result = JNILayer.DFTTSSpeak(0,
 vo.m_vet,
 vo.m_sVoiceName,
 vo.m_VoiceID,
 vo.m_lang,
 textArea1.getText(), -1, -1, -1, -1,
 1, DFTTS_TEXT_TYPE_XML,(short)-1);

if(result != 0)
{

JOptionPane.showMessageDialog(this, "SDK Speak error: " + result);

}

DFTTSStop

It stops the playback of synthesized voices from a sound card.

Synopsis
public native int DFTTSStop(int vet, short lang);

Parameters
vet

Which engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) (internal use only),

MSSAPI (3) or MACOSXSPMAN (4))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

public final int MACOSXSPMAN = 4;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Notes
Using DFTTSSpeak(), stops the playback of synthesized voice before synthesizing.

Return Values
0 (Success),
1 (Invalid pointer),
2 (Other error)

DFTTSPause
Pauses the playback of synthesized voices from a sound card.

Synopsis
public native int DFTTSPause(int vet, short lang);

Parameters
vet

Which engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) (internal use only),

MSSAPI (3) or MACOSXSPMAN (4))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

public final int MACOSXSPMAN = 4;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Description
Pauses the playback of synthesized voice that is carried out using DFTTSSpeak().

Return Values
0 (Success),
1 (Unimplemeted),
2 (Internal error),
3 (Invalid parameter),
4 (Invalid pointer),
.
.
.
15 (Other error)

DFTTSResume
Resumes the playback of the synthesized voice from a sound card.

Synopsis
public native int DFTTSResume(int vet, short lang);

Parameters
vet

Which engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) (internal use only),

MSSAPI (3) or MACOSXSPMAN (4))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

public final int MACOSXSPMAN = 4;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

Description
Resumes the playback of synthesized voice that was paused using DFTTSPause().

Return Values
0 if succeeded.

DFTTSExportToFileEx
It saves the synthesized output as a file.

Synopsis
public native int DFTTSExportToFileEx(int vet, String szVoiceName,

int iVoiceID, short lang, String szText, int iPitch, int iSpeed,
int iVolume, int iPause, int iDictID, int ttTextType, String szFilePath,
short ffFileFormat, String szAudioEncoding, int iAudioSamplingRate,
int iAudioChannels);

Parameters
vet

Which engine type (NEOSPEECHVOICETEXT (0), CEPSTRAL (1), ATTNV (2) (internal use only),

MSSAPI (3) or MACOSXSPMAN (4))

Use the following values (see sample):

public final int NEOSPEECHVOICETEXT = 0;

public final int CEPSTRAL = 1;

public final int ATTNV = 2;

public final int MSSAPI = 3;

public final int MACOSXSPMAN = 4;

szVoiceName

Internal voice name (matters for CEPSTRAL, ATTNV, MSSAPI and MACOSXSPMAN). Example:

“David” or “Mike16”.

iVoiceID

Internal voice id (matters for NEOSPEECHVOICETEXT).

Use the following values (see sample):

 public final int NEOSPEECH_KATE_ENG = 0;

 public final int NEOSPEECH_PAUL_ENG = 1;

 public final int NEOSPEECH_MIYU_JPN = 0;

 public final int NEOSPEECH_SHOW_JPN = 1;

 public final int NEOSPEECH_MISAKI_JPN = 2;

 public final int NEOSPEECH_LILY_CHI = 0;

 public final int NEOSPEECH_WANG_CHI = 1;

 public final int NEOSPEECH_JUNWOO_KOR = 3;

 public final int NEOSPEECH_SUJIN_KOR = 8;

 public final int NEOSPEECH_YUMI_KOR = 10;

 public final int NEOSPEECH_GYURI_KOR = 11;

 public final int NEOSPEECH_DAYOUNG_KOR = 12;

lang

Language id (only NEOSPEECHVOICETEXT, use 0 (zero) for the other engines)

The new language system of the SDK is designed after the Windows language id

implementation.

See the Frame1.java in the sample for all language constants. A language id is derived from a

primary language id and a sub-language id.

To create a language id you must use MakeLanguage with the desired main and sub- language

ids.

U.S. English language id is 1033.

To obtain a primary language id from a created with MakeLanguage id, use GetMainLanguage.

To obtain a sub-language id from a created with MakeLanguage id, use GetSubLanguage.

szText

Text string to be synthesized (No size limit).

iPitch

Defines the pitch of synthesized voice.

The default value is set to 100(%). The possible pitch range varies depending on the engine

type (see below). ATTNV does not support pitch modifications by design.

For –1, use default value.

iSpeed

Defines the speed of synthesized voice. The default value is set to 100%. The range varies

depending on the engine type (see below).

For –1, use default value.

iVolume

Defines the volume of synthesized voice. The default value is set to 100%. The range varies

depending on the engine type (see below).

For –1, use default value.

iPause

Defines the length of pause between sentences of synthesized voice (NEOSPEECHVOICETEXT

ONLY). The default value is set to 670(msec). The range is 0~20000(msec) and the lower value

indicates shorter pause.

For –1, use default value

The following declarations (see sample) outline the default values and supported ranges

between engines:

public final int DF_TTS_DEFAULT_PITCH = 100; /*100%*/
public final int DF_TTS_DEFAULT_SPEED = 100; /*100%*/
public final int DF_TTS_DEFAULT_VOLUME = 100; /*100%*/
public final int DF_TTS_DEFAULT_PAUSE = 670; /*670 msec*/
public final int DF_TTS_NEOSPEECH_MIN_PITCH = 50;
public final int DF_TTS_NEOSPEECH_MAX_PITCH = 200;
public final int DF_TTS_NEOSPEECH_MIN_SPEED = 50;
public final int DF_TTS_NEOSPEECH_MAX_SPEED = 400;
public final int DF_TTS_NEOSPEECH_MIN_VOLUME = 0;
public final int DF_TTS_NEOSPEECH_MAX_VOLUME = 500;
public final int DF_TTS_NEOSPEECH_MIN_PAUSE = 0;
public final int DF_TTS_NEOSPEECH_MAX_PAUSE = 20000;
public final int DF_TTS_CEPSTRAL_MIN_PITCH = 100;
public final int DF_TTS_CEPSTRAL_MAX_PITCH = 500;
public final int DF_TTS_CEPSTRAL_MIN_SPEED = 0;
public final int DF_TTS_CEPSTRAL_MAX_SPEED = 400;
public final int DF_TTS_CEPSTRAL_MIN_VOLUME = 0;
public final int DF_TTS_CEPSTRAL_MAX_VOLUME = 500;
public final int DF_TTS_ATTNV_MIN_SPEED = 13;
public final int DF_TTS_ATTNV_MAX_SPEED = 800;
public final int DF_TTS_ATTNV_MIN_VOLUME = 0;
public final int DF_TTS_ATTNV_MAX_VOLUME = 500;
public final int DF_TTS_ATTNV_MIN_PITCH = 0; /*AT&T NV do not support

this*/
public final int DF_TTS_ATTNV_MAX_PITCH = 0; /*AT&T NV do not support

this*/
public final int DF_TTS_MACOSXSPMAN_MIN_PITCH = 1;
public final int DF_TTS_MACOSXSPMAN_MAX_PITCH = 1000;
public final int DF_TTS_MACOSXSPMAN_MIN_SPEED = 1;
public final int DF_TTS_MACOSXSPMAN_MAX_SPEED = 1000;
public final int DF_TTS_MACOSXSPMAN_MIN_VOLUME = 100;
public final int DF_TTS_MACOSXSPMAN_MAX_VOLUME = 500;
public final int DF_TTS_MSSAPI_MIN_PITCH = 30;
public final int DF_TTS_MSSAPI_MAX_PITCH = 350;
public final int DF_TTS_MSSAPI_MIN_SPEED = 30;
public final int DF_TTS_MSSAPI_MAX_SPEED = 350;
public final int DF_TTS_MSSAPI_MIN_VOLUME = 0;
public final int DF_TTS_MSSAPI_MAX_VOLUME = 100;

iDictID

ID of the user dictionary when multiple user dictionaries are in use. The default user’s uses

value 0 and the range is between 1~1023 (ONLY applicable with NEOSPEECHVOICETEXT).

For –1, use default value.

ttTextType

Defines the text type to be synthesized.

Use the following values (see sample):

public final short DFTTS_TEXT_TYPE_PLAIN = 0;

public final short DFTTS_TEXT_TYPE_XML = 1;

For regular text, use DFTTS_TEXT_TYPE_PLAIN, and for VoiceXML/SSML text, use

DFTTS_TEXT_TYPE_XML. The value of –1 is regarded as regular text.

szFilePath

File path to save the synthesized voice output under.

ffFileFormat

Defines the types of synthesized output formats.

CEPSTRAL: Ignored. See below.

ATTNV: Ignored. Only PCM WAV support.

MACOSXSPMAN: Ignored. Only AIFF support.

NEOSPEECHVOICETEXT: The following are the types of synthesized output file format that

the DF TTS SDK supports for NeoSpeech VoiceText™:

VT_FILE_API_FMT_S16PCM 16bits Linear PCM

VT_FILE_API_FMT_ALAW 8bits A-law PCM

VT_FILE_API_FMT_MULAW 8bits Mu-law PCM

VT_FILE_API_FMT_DADPCM 4bits Dialogic ADPCM

VT_FILE_API_FMT_S16PCM_WAVE 16bits Linear PCM WAVE

VT_FILE_API_FMT_U08PCM_WAVE 8bits Unsigned Linear PCM WAVE

VT_FILE_API_FMT_IMA_WAVE 4bits IMA ADPCM WAVE

VT_FILE_API_FMT_ALAW_WAVE 8bits A-law PCM WAVE

VT_FILE_API_FMT_MULAW_WAVE 8bits Mu-law PCM WAVE

VT_FILE_API_FMT_MULAW_AU 8bits Mu-law PCM SUN AU

Use the following constants (see sample):

public final short VT_FILE_API_FMT_S16PCM = 0;
public final short VT_FILE_API_FMT_ALAW = 1;
public final short VT_FILE_API_FMT_MULAW = 2;
public final short VT_FILE_API_FMT_DADPCM = 3;
public final short VT_FILE_API_FMT_S16PCM_WAVE = 4;
public final short VT_FILE_API_FMT_U08PCM_WAVE = 5;
public final short VT_FILE_API_FMT_IMA_WAVE = 6;
public final short VT_FILE_API_FMT_ALAW_WAVE = 7;
public final short VT_FILE_API_FMT_MULAW_WAVE = 8;
public final short VT_FILE_API_FMT_MULAW_AU = 9;

MSSAPI: Use the format settings specified by the following constants (see sample):

public final short SPSF_Default = -1;
public final short SPSF_NoAssignedFormat = 0;
public final short SPSF_Text = SPSF_NoAssignedFormat + 1;
public final short SPSF_NonStandardFormat = SPSF_Text + 1;
public final short SPSF_ExtendedAudioFormat = SPSF_NonStandardFormat + 1;
public final short SPSF_8kHz8BitMono = SPSF_ExtendedAudioFormat + 1;
public final short SPSF_8kHz8BitStereo = SPSF_8kHz8BitMono + 1;
public final short SPSF_8kHz16BitMono = SPSF_8kHz8BitStereo + 1;
public final short SPSF_8kHz16BitStereo = SPSF_8kHz16BitMono + 1;
public final short SPSF_11kHz8BitMono = SPSF_8kHz16BitStereo + 1;
public final short SPSF_11kHz8BitStereo = SPSF_11kHz8BitMono + 1;
public final short SPSF_11kHz16BitMono = SPSF_11kHz8BitStereo + 1;
public final short SPSF_11kHz16BitStereo = SPSF_11kHz16BitMono + 1;
public final short SPSF_12kHz8BitMono = SPSF_11kHz16BitStereo + 1;
public final short SPSF_12kHz8BitStereo = SPSF_12kHz8BitMono + 1;
public final short SPSF_12kHz16BitMono = SPSF_12kHz8BitStereo + 1;
public final short SPSF_12kHz16BitStereo = SPSF_12kHz16BitMono + 1;
public final short SPSF_16kHz8BitMono = SPSF_12kHz16BitStereo + 1;
public final short SPSF_16kHz8BitStereo = SPSF_16kHz8BitMono + 1;
public final short SPSF_16kHz16BitMono = SPSF_16kHz8BitStereo + 1;
public final short SPSF_16kHz16BitStereo = SPSF_16kHz16BitMono + 1;
public final short SPSF_22kHz8BitMono = SPSF_16kHz16BitStereo + 1;
public final short SPSF_22kHz8BitStereo = SPSF_22kHz8BitMono + 1;
public final short SPSF_22kHz16BitMono = SPSF_22kHz8BitStereo + 1;
public final short SPSF_22kHz16BitStereo = SPSF_22kHz16BitMono + 1;
public final short SPSF_24kHz8BitMono = SPSF_22kHz16BitStereo + 1;
public final short SPSF_24kHz8BitStereo = SPSF_24kHz8BitMono + 1;
public final short SPSF_24kHz16BitMono = SPSF_24kHz8BitStereo + 1;
public final short SPSF_24kHz16BitStereo = SPSF_24kHz16BitMono + 1;
public final short SPSF_32kHz8BitMono = SPSF_24kHz16BitStereo + 1;
public final short SPSF_32kHz8BitStereo = SPSF_32kHz8BitMono + 1;
public final short SPSF_32kHz16BitMono = SPSF_32kHz8BitStereo + 1;
public final short SPSF_32kHz16BitStereo = SPSF_32kHz16BitMono + 1;
public final short SPSF_44kHz8BitMono = SPSF_32kHz16BitStereo + 1;
public final short SPSF_44kHz8BitStereo = SPSF_44kHz8BitMono + 1;
public final short SPSF_44kHz16BitMono = SPSF_44kHz8BitStereo + 1;
public final short SPSF_44kHz16BitStereo = SPSF_44kHz16BitMono + 1;
public final short SPSF_48kHz8BitMono = SPSF_44kHz16BitStereo + 1;
public final short SPSF_48kHz8BitStereo = SPSF_48kHz8BitMono + 1;
public final short SPSF_48kHz16BitMono = SPSF_48kHz8BitStereo + 1;
public final short SPSF_48kHz16BitStereo = SPSF_48kHz16BitMono + 1;
public final short SPSF_TrueSpeech_8kHz1BitMono = SPSF_48kHz16BitStereo + 1;
public final short SPSF_CCITT_ALaw_8kHzMono = SPSF_TrueSpeech_8kHz1BitMono + 1;
public final short SPSF_CCITT_ALaw_8kHzStereo = SPSF_CCITT_ALaw_8kHzMono + 1;
public final short SPSF_CCITT_ALaw_11kHzMono = SPSF_CCITT_ALaw_8kHzStereo + 1;
public final short SPSF_CCITT_ALaw_11kHzStereo = SPSF_CCITT_ALaw_11kHzMono + 1;
public final short SPSF_CCITT_ALaw_22kHzMono = SPSF_CCITT_ALaw_11kHzStereo + 1;
public final short SPSF_CCITT_ALaw_22kHzStereo = SPSF_CCITT_ALaw_22kHzMono + 1;
public final short SPSF_CCITT_ALaw_44kHzMono = SPSF_CCITT_ALaw_22kHzStereo + 1;
public final short SPSF_CCITT_ALaw_44kHzStereo = SPSF_CCITT_ALaw_44kHzMono + 1;
public final short SPSF_CCITT_uLaw_8kHzMono = SPSF_CCITT_ALaw_44kHzStereo + 1;
public final short SPSF_CCITT_uLaw_8kHzStereo = SPSF_CCITT_uLaw_8kHzMono + 1;
public final short SPSF_CCITT_uLaw_11kHzMono = SPSF_CCITT_uLaw_8kHzStereo + 1;
public final short SPSF_CCITT_uLaw_11kHzStereo = SPSF_CCITT_uLaw_11kHzMono + 1;
public final short SPSF_CCITT_uLaw_22kHzMono = SPSF_CCITT_uLaw_11kHzStereo + 1;
public final short SPSF_CCITT_uLaw_22kHzStereo = SPSF_CCITT_uLaw_22kHzMono + 1;
public final short SPSF_CCITT_uLaw_44kHzMono = SPSF_CCITT_uLaw_22kHzStereo + 1;
public final short SPSF_CCITT_uLaw_44kHzStereo = SPSF_CCITT_uLaw_44kHzMono + 1;
public final short SPSF_ADPCM_8kHzMono = SPSF_CCITT_uLaw_44kHzStereo + 1;
public final short SPSF_ADPCM_8kHzStereo = SPSF_ADPCM_8kHzMono + 1;
public final short SPSF_ADPCM_11kHzMono = SPSF_ADPCM_8kHzStereo + 1;
public final short SPSF_ADPCM_11kHzStereo = SPSF_ADPCM_11kHzMono + 1;
public final short SPSF_ADPCM_22kHzMono = SPSF_ADPCM_11kHzStereo + 1;
public final short SPSF_ADPCM_22kHzStereo = SPSF_ADPCM_22kHzMono + 1;
public final short SPSF_ADPCM_44kHzMono = SPSF_ADPCM_22kHzStereo + 1;
public final short SPSF_ADPCM_44kHzStereo = SPSF_ADPCM_44kHzMono + 1;
public final short SPSF_GSM610_8kHzMono = SPSF_ADPCM_44kHzStereo + 1;

public final short SPSF_GSM610_11kHzMono = SPSF_GSM610_8kHzMono + 1;
public final short SPSF_GSM610_22kHzMono = SPSF_GSM610_11kHzMono + 1;
public final short SPSF_GSM610_44kHzMono = SPSF_GSM610_22kHzMono + 1;
public final short SPSF_NUM_FORMATS = SPSF_GSM610_44kHzMono + 1;

szAudioEncoding, iAudioSamplingRate, iAudioChannels

NEOSPEECHVOICETEXT: Ignored.

ATTNV: Ignored.

MACOSXSPMAN: Ignored.

MSSAPI: Ignored.

CEPSTRAL: Possible values:

szAudioEncoding:

"pcm16", "pcm8" PCM 16 bit/8 bit WAV

"ulaw" - µ-Law (8-bit), "alaw" - A-Law (8-bit)

"riff": Microsoft RIFF (WAV) file

"snd": Sun/NeXT .au (SND) format.

"raw": unheadered audio data, native byte order

"le": unheadered audio data, little-endian (LSB first)

"be": unheadered audio data, big-endian (MSB first)

iAudioSamplingRate:

8000 (8 KHz), 16000 (16 KHz), 11025 (11.025 kHz), etc.

iAudioChannels:

1 (mono), 2 (stereo)

Notes
ATTNV and MACOSXSPMAN ignore all format parameters. ATTNV currently only exports in PCM

WAV format. MACOSXSPMAN currently only exports in AIFF format.

Return Values
0 is returned when successfully synthesized and the following common error codes are

returned when errors occur:

[1] Used format that is not supported.

[2] Failed to secure channel memory

[3] Text string is a NULL pointer

[4] The length of text string is 0.

[5] The TTS DB of the voice requested is not loaded

[6] Failed to generate the synthesized voice file

.

.

.

[104] Other errors

Example (see sample)

// *** YOU MUST CHANGE THE WAV PATH TO MATCH YOURS! *** //

/*MAC OS X note: MACOSXSPMAN only AIFF format supported. All format args will be ignored*/

//JNILayer.MakeLanguage(LANG_ENGLISH, SUBLANG_ENGLISH_US) = 1033 - You can just use 1033

Object obj = comboBox1.getItemAt(comboBox1.getSelectedIndex());

VoiceData vo = (VoiceData)obj;

String filepath = "test.wav";

if(vo.m_vet == MACOSXSPMAN)
filepath = "test.aiff";

short format = 0;

if(vo.m_vet == NEOSPEECHVOICETEXT)
format = VT_FILE_API_FMT_ALAW_WAVE;

else if(vo.m_vet == MSSAPI)
format = SPSF_16kHz16BitStereo;

int result = JNILayer.DFTTSExportToFileEx(vo.m_vet,
 vo.m_sVoiceName, vo.m_VoiceID,
 (short)1033, textArea1.getText(), -1,
 -1, -1, -1,
 1, DFTTS_TEXT_TYPE_XML,
 filepath,
 format,
 "pcm16", 16000,
 2);

if (result != 0)
{

JOptionPane.showMessageDialog(this, "SDK Export error: " + result);

}

GetDFTTSVoice
Returns information about an SDK-supported voice installed on the current system (voice

name, engine, voice id, language id).

Synopsis
public native String GetDFTTSVoice(int iVoiceInfoIdIn,

 int[] pvetOut,
 int[] piVoiceNameLenOut,

int[] piVoiceIDOut,
short[] plangOut
);

Parameters

[IN] iVoiceInfoIdIn

Zero-based number of the voice info retrieval.

[OUT] pvetOut

Voice engine type of the retrieved voice (NEOSPEECHVOICETEXT, CEPSTRAL, ATTNV,

MACOSXSPMAN or MSSAPI).

[OUT] piVoiceNameLenOut

The length of the returned voice name string.

[OUT] piVoiceIDOut

Voice id of the retrieved voice. Only matters for NEOSPEECHVOICETEXT. Other voices will have

an id of -1.

[OUT] plangOut

Language id of the retrieved voice. Only makes a difference right now for

NEOSPEECHVOICETEXT.

Return Values
The voice name string (Java (TM) format).

Example (see sample)

//List installed voices

int z=0;

for(;;z++)
{

int[] pvetOut = new int[] { -1 };

int[] piVoiceNameLenOut = new int[] { -1 };

int[] piVoiceIDOut = new int[] { -1 };

short[] plangOut = new short[] { -1 };

String szVoiceNameOut = JNILayer.GetDFTTSVoice(z,
 pvetOut,
 piVoiceNameLenOut,
 piVoiceIDOut,
 plangOut
);

if(szVoiceNameOut.length() == 0)
 break;

System.out.println("Voice Engine: " + pvetOut[0] + '\n');

System.out.println("Voice Name: " + szVoiceNameOut + '\n');

System.out.println("Voice Name Length: " + piVoiceNameLenOut[0] + '\n');

System.out.println("Voice ID: " + piVoiceIDOut[0] + '\n');

System.out.println("Language ID: " + plangOut[0] + '\n');

//See class VoiceData

comboBox1.addItem(new VoiceData(szVoiceNameOut,
 pvetOut[0],
 piVoiceIDOut[0],
 plangOut[0]));

}

if (z == 0)
{
JOptionPane.showMessageDialog(this, "No voices can be found on your system! Please download and
install at least 1 voice!");
}

Appendix 1

Java (TM) Layer Class

public class JNILayer
{

 public native String GetDFTTSVoice(int iVoiceInfoIdIn,
 int[] pvetOut,
 int[] piVoiceNameLenOut,

int[] piVoiceIDOut,
short[] plangOut
);

 public native void InitDFTTSEngineEx3(int hwndWinOwner,
 String szNeoSpeechDBFolderPathKate,
 String szNeoSpeechDBFolderPathPaul,
 String szNeoSpeechDBFolderPathMiyu,
 String szNeoSpeechDBFolderPathShow,
 String szNeoSpeechDBFolderPathMisaki,
 String szNeoSpeechDBFolderPathLily,
 String szNeoSpeechDBFolderPathWang,
 String szNeoSpeechDBFolderPathJunwoo,
 String szNeoSpeechDBFolderPathSujin,
 String szNeoSpeechDBFolderPathYumi,
 String szNeoSpeechDBFolderPathGyuri,
 String szNeoSpeechDBFolderPathDayoung,
 String szNeoSpeechLicFilePathKate,
 String szNeoSpeechLicFilePathPaul,
 String szNeoSpeechLicFilePathMiyu,
 String szNeoSpeechLicFilePathShow,
 String szNeoSpeechLicFilePathMisaki,
 String szNeoSpeechLicFilePathLily,
 String szNeoSpeechLicFilePathWang,
 String szNeoSpeechLicFilePathJunwoo,
 String szNeoSpeechLicFilePathSujin,
 String szNeoSpeechLicFilePathYumi,
 String szNeoSpeechLicFilePathGyuri,
 String szNeoSpeechLicFilePathDayoung,
 int[] psiLoadedEngines,
 int[] psiLoadedEnginesReturnValues
);

public native int UninitDFTTSEngine();

public native short MakeLanguage(short mainlang,

short sublang
);

public native short GetMainLanguage(short lang);

public native short GetSubLanguage(short lang);

 public native int LoadDFTTSUserDict(int iDictIndex, String szDictName,
 String szDictFileName, int vet, short lang,
 String szVoiceName, String szDictContents);

 public native int UnloadDFTTSUserDict(int iDictIndex, String szDictName,
 int vet, short lang);

public native int DFTTSSpeak(int hwndWinOwner, int vet,
 String szVoiceName, int iVoiceID, short lang, String szText, int iPitch,
 int iSpeed, int iVolume, int iPause, int iDictID, int ttTextType,

 short ofOutPutFormat);

public native int DFTTSPause(int vet, short lang);

public native int DFTTSResume(int vet, short lang);

public native int DFTTSStop(int vet, short lang);

public native int DFTTSExportToFileEx(int vet, String szVoiceName,
 int iVoiceID, short lang, String szText, int iPitch, int iSpeed,
 int iVolume, int iPause, int iDictID, int ttTextType, String szFilePath,
 short ffFileFormat, String szAudioEncoding, int iAudioSamplingRate,
 int iAudioChannels);

static
{

System.loadLibrary("dfttsjni");

}

//MACOSXSPMAN: onExport event data is sent here (onWord). MACOSXSPMAN treats exports as speech.

public void onWord(int start, int end)
{

}

//MACOSXSPMAN: Do not use. Event data is sent to onWord
public void onExport(int start, int end)
{

//start and end are SDK-reserved

}

}

Appendix 2

Controlling Speech with a Standard XML Tag Set

VTML for NeoSpeech VoiceText ™

(See vtml.pdf or vtml.ps)

SSML

(See http://www.w3.org/TR/speech-synthesis/)

Note: Not all tags are supported by all engines.

Copyright © Digital Future 2008.

All rights reserved.

