

maXbox Starter 8
Start with Operating System Programming

1.1 Admin your System
Today we spend another time in programming with your operating system (called OS) and the API. An
API (Application Programming Interface) is the port to the library of your system. Most of the VCL is
designed for working with the Windows API or the CLib of Linux. This is handled in a way analogous to
the way a call to a DLL (dynamic link librarie) works: The VCL1 is a managed API that calls into the
Win API, marshalling between the managed structures on the VCL side and the unmanaged types and
operations that the Win API uses. Hope you did already work with the Starter 1 to 7 to get more
training available at:

http://www.softwareschule.ch/maxbox.htm

This lesson will introduce you to various short functions interacting with the OS. When your application
calls a Win API, it is making a call into an (unmanaged) DLL. Because of this, all parameter values
must be known before, where the OS can work with it, and results are then send back into memory.
Also the CPU on which the OS relies must be known because of generic types. The generic integer
types are Integer and Cardinal; use these whenever possible, since they result in the best
performance for the underlying CPU and operating system.

When writing cross-platform applications, remember that although the Delphi language is not case
sensitive, the Linux operating system is. When using objects and routines that work with files, be
attentive to the case of file names.

Operating Systems today have become so complex that they require large numbers of developers,
assembler programmer, testers and managerial overhead to develop. They rival large commercial
enterprise application for smart phones or desktop system in their complexity and cost many millions
of dollars to develop and market.

Let’s begin with the call of an API function:

1. Search the name of the API (user32.dll)
2. Initialize resources or state and check parameters.
3. Locate the name of the function (MessageBeep)
 1. Declare the function (line 18).
 2. External the function (line 19).
4. Call the function in your app (MessageBeep(sound))

The final ingredient of a call is to find the right parameters. No one wants to set the wrong parameter
and type and most of the DLL’s aren’t documented well. So what’s a DLL? Dynamic link libraries
(DLLs) are modules of compiled code that work in conjunction with an executable or an app to provide

1 VisualComponentLibrary

 2

functionality to an application. You can create DLLs in cross-platform programs. However, on Linux,
DLLs (and packages) recompile as shared objects.

1.2 Code the System
As you already know the tool is split up into the toolbar across the top, the editor or code part in the
centre and the output window at the bottom.

����Before this starter code will work you will need to download maXbox from the website. It can be
down-loaded from http://sourceforge.net/projects/maxbox site. Once the download has finished, unzip
the file, making sure that you preserve the folder structure as it is. If you double-click maxbox3.exe
the box opens a default program. Test it with F9 or press Compile and you should hear sound. So far
so good now we’ll open now the example in the folder /examples:

192_opearatingsystem2.txt

If you can’t find the file use the link:
http://www.softwareschule.ch/examples/192_opearatingsystem2.txt

Or you use the Save Page as… function of your browser2 and load it from examples (or wherever
you stored it). Now let’s take a look at the code of this project. Our first line is

12 program OperatingSystem_Tutorial_Delphi;

We have to name the program it’s called like above.

17 // for DLL Load Demo

18 function MessageBeep(para: integer): byte;

19 external 'MessageBeep@user32.dll stdcall ';

20

21 const RESPATH = '\SYSTEM\CurrentControlSet\services\SCCSService' ;

22 REGROOT = HKEY_LOCAL_MACHINE;

23

24 REGPATH3 = '\Software\Microsoft\Internet Explorer\TypedURLs' ;

25 REGROOT3 = HKEY_CURRENT_USER;

When creating a DLL that uses the VCL or CLX, the required VCL or CLX components are linked into
the DLL resulting in a certain amount of overhead. The impact of this overhead on the overall size of
the application can be minimized by combining several components into one DLL that only needs one
copy of the VCL and CLX support components.
In our case we don’t create a DLL we just call it. First in line 18 we declare the function and in line 19
we declare it as external. Note the external keyword is required to find the DLL in a well known path.
Be sure the file exists and the path is one of the environment variables. Otherwise you put the DLL in
the local path of the maXbox exe. In line 21 you find a declaration we use later in this script.

The exported functions of that DLL then become available for use by your app. Prototype the DLL
functions as below, so the function name can be an alias, e.g. myMessageBeep:

18 function myMessageBeep(para: integer): byte;
19 external 'MessageBeep@user32.dll stdcall';

���� You can also load a DLL at runtime by calling the LoadLibrary function. The example requires
many objects of the classes: TForm, TStringGrid, TFileStream, TPrinter, TIdHTTP,
TSpeedButton, TComponent, TApplication, TGraphic, T Picture and TBitmap and
the bitmap passes your images with the help of a LoadFromFile(BITMAPPATH) to the screen.

2 Or copy & paste

 3

Be sure this relative path BITMAPPATH points to the bitmap. That needs an explanation: For Win API
functions that manipulate files, file names can often be relative to the current directory, while some
APIs require a fully qualified path. A file name is relative to the current directory if it does not begin
with one of the following:

• A UNC name of any format, which always starts with two backslash, characters ("\\").
UNC is mostly used on a file server.

• A disk designator with a backslash, for example "C:\" or "d:\".

So we use a relative path:
28 BITMAPPATH = '..\maxbox3\examples\cityma x.bmp';

Relative paths can combine both example types, for example "C:..\tmp.txt". This is useful because,
although the system keeps track of the current drive along with the current directory of that drive, it
also keeps track of the current directories in each of the different drive letters.
Let’s change the topic and call now your DLL function; that’s how we call it:

39 if sound mod 10 = 0 then begin

40 MessageBeep(sound)

41 Sleep(1500);

42 end

This routine can be found in our function MessageBeep which is called by the Signal _Sounds
procedure, so we jump now to the next function getFileCount .
The function counts all files in your root or exe folder.

54 Function getFileCount: integer;

There are three routines used for finding a file: FindFirst , FindNext , and FindClose .
FindFirst searches for the first instance of a filename with a given set of attributes in a specified
directory. FindNext returns the next entry matching the name and attributes specified in a previous
call to FindFirst . FindClose releases memory allocated by FindFirst . You should always use
Close to terminate a First/ Next sequence. If you want to know if a file exists, a FileExists function
returns True if the file exists, False otherwise.

1: The Big Bit Button calls a resource

FindFirst is very versatile.
79 Found:= FindFirst(Folder, faDirectory); //like *.*

A TSearchRec defines the file information searched for by FindFirst or FindNext . Now we have
a Windows application that we can run, but the form doesn’t show the result. The form has no other
controls on it (beside a button and a grid) to display any information. It’s up to you! In a regular Win
Forms application we would now add such controls like a list to the form to build our final app, but for

 4

our tutorial we are going to write out everything using the Writeln procedure. In line 274 and 275 you
see the output. Next I’ll show you another output by ShowMessage.
The ShowMessage procedure displays a string of text in a simple dialog with an OK button.

277 if GetTextFromFile(ExePath+ 'firstdemo3.txt ',rStr) then ShowMessage(rStr);

The function uses a FileStream to open the file. Because TFileStream is a stream object, it shares
the common stream methods. You can use these methods to read from or write to the file, copy data
to or from other stream classes, and read or write components values.

���� A note about the upper functions with filenames. In cross-platform applications, you should
replace any hard-coded pathnames with a correct path for the system or use environment variables.

On line 113 we get the DriveTypes. DiskSize returns -1 if the drive number is invalid. Drive parameter
can be set to: 0 = Current drive, 1 = A, 2 = B, 3 = C and so on. At the end of the code you see the
specification of the function GetDriveType .

 case GetDriveType(PChar(chr(Drive) + ':\')) of

 0: // DRIVE_UNKNOWN

 Memo2.Lines.Add(DriveLetter + ' Unknown Drive');

 {1: // DRIVE_NO_ROOT_DIR

 Memo2.Lines.Add(DriveLetter + ' No Root Dir o r mount Point');}

 2: //DRIVE_REMOVABLE:

 Memo2.Lines.Add(DriveLetter + ' Removable or Floppy Drive');

For example, The GetDriveType API function determines whether a disk drive is a removable, fixed,
CD-ROM, RAM disk, or network drive. The procedure lists all the drives and their types on a users
computer.

� Place a button and another memo component on our form and assign an OnClick handler
of a button around the procedure in line 113.

Next function is a prototype of a timecounter in line 139.

 time:= GetTickCount;

 maxform1.StatusBar1.SimpleText:= ('Time Diff: ' +IntToStr(GetTickCount-time));

The GetTickCount gives us the number of milliseconds since Win was started. The accuracy of this
API, however, is only 55 ms, as it is updated 18.2 times each second (just like the real mode system
clock).These timestamps use the millisecond-resolution "time since Win started" returned by the
GetTickCount function. Apps must be aware that this could be the tick count on the server (or
machine where the service provider directly managing the hardware is running), and is not necessarily
the same machine on which the application is executing; thus, the timestamps in these API messages
can only be compared to each other, and not to the value returned by GetTickCount on the
processor on which the application is running.

On line 149 and 157 we go back to graphics and bitmaps in an OS. The BITMAP resource-definition
statement specifies a bitmap that an application uses in its screen display or as an item in a menu or
control. A bitmap is a rectangular array of bits.
How graphic images appear in your application depends on the type of object whose canvas you draw
on. If you are drawing directly onto the canvas of a control like our StringGrid, the picture is displayed
immediately. However, if you draw on an off-screen image such as a TBitmap canvas, the image is
not displayed until a control copies from the bitmap onto the control's canvas.

161 StringGrid1.Canvas.Draw(Rect.Left,Rect.Top, ge tBitmap);

That is, when drawing bitmaps and assigning them to an image control, the image appears only when
the control has an opportunity to process its OnPaint message (VCL applications) or event (CLX
applications).

 5

A real interesting point is now to get some bitmaps, icons or other resources out from the box, I mean
out from the maXbox!

195 with myButton do begin

196 Parent:= frmMon;

………..

203 Glyph.LoadFromResourceName(getHINSTANCE,' OPENFOLDER');

In addition to form files, each project uses resources to hold the application's icon and other resources
such as strings or bitmaps. And such a bitmap we get with LoadFromResourceName. This procedure
loads the specified bitmap resource along with palette information from a module's executable file. The
instance is the handle of the module that contains the resource and ResName is the name of the
resource to load.

procedure LoadFromResourceName(Instance: THandle; const ResN ame: String);

So the folder bitmap you see on the speedbutton is extracted from the exe inside, in our way from the
maXbox3.exe itself.

� Try it with another resource called HARD, FLOPPY or EXECUTABLE.
That’s the reason I made two lines more with an example in case you’ll need that.

����CopyRect: Copies part of an image from another canvas into the canvas and Draw renders the
graphic object specified by the Graphic parameter on the canvas at the location given by the
coordinates (X, Y).

1.3 OS Internet Resources
On line 223 we use the mighty function GetHostByName from the winsock.dll. The Win Sockets
GetHostByName function gets host information corresponding to a hostname or domainname. A
socket function on the other side creates a socket which is bound to a specific service provider.
So this function is just a wrapper around some API commands like WSAStartUp.
The WSAStartup function initiates use of the Win Sockets DLL by a process.

IF WSAStartUp($101, WSA) = 0 THEN BEGIN

 GetMem(P,255 + 1);

 StrPCopy(P, ComputerName);

 H:= GetHostByName(P);

� � � � This function must be the first Win Sockets function called by an application or DLL. It allows an
application or DLL to specify the version of Sockets required and to retrieve details of the specific Win
Sockets implementation. After all we get an IP-Address back.
On line 228 we found a second net function.

function GetURLByIndy(const AURL: String): String;

The Get method shows the HTML of the site. The Get and Put methods are overload methods, so in
maXbox you have to name it with Get1 and Get2 and so on or try it with the standard method Get like
in our script.
The acronym HTML stands for Hyper Text Markup Language - the primary programming language
used to write content on the web. One of a practical way to learn more about actually writing HTML is
to get in the maXbox editor and load or open a web-file with the extension .htm or html. Or you copy
the output and paste it in a new maXbox instance. Then you click on the right mouse click (context
menu) and change to HTML Syntax!
Line 245 and the call in line 288 get some insights in the registry of a Win OS. Under 32-bit Windows
many configuration information is stored in the Win registry instead of .ini files, as was the case under

 6

16-bit Windows. In our example we get some information about LocalMachine or CurrentUser
therefore we need a KeyRoot, KeyPath and a Field to look for.

Writeln('Registry read of url2: '+RegRead(REGROOT3, REGPAT H3, 'url2')

���� Linux does not use a registry to store configuration information. Instead, you use text configuration
files and environment variables rather than the registry. System configuration files on Linux are often
located in /etc, such as /etc/hosts. Other user profiles are located in hidden files (preceded with a dot),
such as .bashrc, which holds bash shell settings or .XDefaults, which is used to set defaults for X
programs. Making the correct entries and deletions for install and uninstall is therefore a complex task.

2: Resources of Bitmaps

Let’s back to a window and the well known Handle. An important concept in Win programming is the
concept of an object (not in the OO way) handle. Many functions return a handle to an object that the
function created or loaded from a resource. Internally, Win keeps track of all of these handles, and the
handle serves as the link through the operating system between the object and the application.
There are several ways to obtain the handle of a window in our way with the function FindWindow

253 Handle:= FindWindow(MAINFORM, ''); //FindReplDialog does not

The point is to get a handle <> 0 to prove, our application is alive.

����Since TCanvas is a wrapper resource manager around the Windows device context, you can also
use all Win GDI functions on the canvas. The Handle property of the canvas is the device context
Handle.
On the end we want to print a bitmap on line 260.
261 begin

 //initialization

265 Printer.Canvas.Draw((Printer.PageWidth - aGra phic.Width) div 2,

266 (Printer.PageHeight - aGraphic.H eight) div 2,aGraphic);

267 // Printer.Canvas.Draw(40,40,aGraphic);

268 Printer.Canvas.TextOut(480 , 480 , 'Place any text here'); contentLst:=

In Delphi, you print via the TPrinter object.

• Add printers to your uses clause
• Use the Printer function to access the global instance of TPrinter
• Printer.BeginDoc starts the print job
• Printer.EndDoc stops the print job and sends it to the printer
• Printer.NewPage forces a new page
• Printer.Canvas is used to generate the output page

 7

In the Main Section you find some more OS calls like the CurrentProcessID or NumberOfProcessors
or the PageSize to discover on your OS.

Most of those functions after line 272 we show the new content or the result with Writeln in the
output window below the status line.

��Try to uncomment the line 304 and start a script within a script!:

SHELL OPENER =

 ' ExecuteCommand('cmd','/k dir *.*')

Some notes at last about console applications. Console applications are 32-bit programs that run
without a graphical interface, in a console window. These applications typically don't require much
user input and perform a limited set of functions.

Users can terminate console applications in one of the following ways:

Click the Close (X) button.

• Press Ctrl+C.
• Press Ctrl+Break.
• Log off.

I made an example of a console application in a simple way to execute:

http://sourceforge.net/projects/maxbox/files/maXbox_Archive/wikimaxboxtest.zip/download

max@kleiner.com

Links of maXbox and a simple Web Server:

http://www.softwareschule.ch/maxbox.htm
http://www.softwareschule.ch/download/httpsserver2.zip

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

