1

A Pascal Based Approach towards
Statistical Computing

Frank Katritzke, Wolfgang Merzenich,
Rolf-Dieter Reiss and Michael Thomas

Abstract

Most statistical programming languages (like S, R or XploRe) are dynam-
ically typed and employ an interpreter for program execution. However,
the interactivity supported by that approach is usually not required for
libraries which are not modified by the user. We discuss the related perfor-
mance problems and suggest the usage of a strongly typed language that
includes the data manipulation facilities provided by statistical languages.
We illustrate our approach by comparing the coding techniques and
runtime performance of our prototypical implementation of a Pascal based
statistical language with a traditional one. An outlook on a client/server
environment is given where components written in our language can be
utilized in various frontends.
Key Words: Statistical language; Strong typing; Component software;
Graphical scripting language

Introduction

Statistical analyses require the use of a programmable environment if tasks
beyond the limited facilities of a menu system must be performed. Common
general purpose languages like C or Fortran are inconvenient for implementing
statistical algorithms which often require the manipulation of complete data

sets.

Statistical languages, like S (Becker and Chambers 1984), R (Gentleman

and Thaka 1997) or XploRe (Hérdle, Klinke and Miiller 2000), have been devel-
oped with the following main characteristics:

The handling of data sets with arbitrary lengths is supported whereby
memory management is automatically performed.

Operators and functions can be applied to complete data sets without
requiring explicit loops.

Parts of data sets can be extracted and easily manipulated.

These languages are generally applicable, i.e., they provide the usual con-
trol structures and subroutine mechanisms of general purpose languages.

Statistical languages are usually scripting languages offering the user an
interactive dialog allowing commands that are interpreted and immediately ex-
ecuted. Subroutines (macros) are implemented by using the same statements
that are employed in an interactive analysis. Chambers (1998) points out that
the resulting smooth migration path from interactive usage to serious program-
ming is important to reduce the start-up costs for new users.

Because it is not necessary to declare types of variables and formal argu-
ments of subroutines, these languages are often called typeless. This approach
can be better characterized as “dynamically typed”, because each value in these
languages is associated with a data type. However, any type checking is post-
poned until it is actually required and the type of a variable may change during
the execution of a program.

Such a behavior is necessary in interactive languages, because it would be
unacceptable for a user to declare all variables before starting a session. There
are also some advantages when subroutines are implemented without declaring
types of formal parameters and results. As a simple example, we consider a
generic function for adding numbers in the S/R notation, namely,

add <— function (x, y) x + ¥y

This function can be used to add values of any type, for which the +-operator
is defined. However, more complex algorithms usually require an explicit check
of the data types of the actual arguments. Thus, true generic functions are
usually possible in special cases only. One should note that the templates of the
strongly typed C++ language provide similar facilities.

2 Problems with Interpreted Languages

In the preceeding lines, we described the advantages of interpreted, dynamically
typed languages, yet one should be aware of two serious drawbacks. Firstly,
these languages usually perform semantic checks (e.g., for the existence of iden-
tifiers) when the code is actually executed which leaves many possibilities for
typing errors to be undetected.

Secondly, type checks for each operation must be performed at run-time.
This must be done not only once, but every time an instruction is executed.
When performing simple operations like the addition of two real numbers, most
of the time for the operation will be spent on verifying the types of the ar-
guments, even when it is clear that — because of the design of the algorithm
— no other types may occur. While the additional overhead is negligible for
interactive execution of commands typed on a command line, it has a serious
impact on routines that require intensive calculations.

Interpreted statistical systems usually offer the inclusion of external subrou-
tines written in a compiled language like C or Fortran as a solution to that
problem. Such an approach is inconvenient in various ways: a recompilation of
a module is required for every target platform. Also, the developer of a module
must be familiar with technical details like parameter passing conventions and

the usage of host-specific development systems. Error handling is problematic.
In addition, general purpose languages are not well suited for performing statis-
tical computing, which is the main reason for using a special statistical language
in the first place.

Ousterhout (1998) distincts between high-level scripting languages and low-
level system programming languages. He suggests to use scripting languages to
combine components that are implemented in a system programming language.
However, there is not yet a system programming language suited for statistical
computing.

Therefore, we implement a strongly typed language that is based on a general
purpose language (namely, Pascal) with the extensions required for statistical
computing. Our language provides vector and matrix operations like other com-
mon statistical languages. Moreover, all variables, parameters and return types
of subroutines must be declared. As a result, the language can be compiled
and executed efficiently. Such a language cannot be applied as an interactive
immediate language for command line execution, but it serves well for the im-
plementation of statistical components.

In the next section, we outline some details of our language, called Stat-
Pascal, describe its inclusion in a menu system and measure its runtime per-
formance. Then, we describe shortly the design of a prototype of a component
integrating environment where StatPascal components are used within a graph-
ical scripting environment. This allows their visual combination, as alternatives
to a textual scripting language.

A good runtime performance is essential to achieve the desired interactivity
of our graphical programs. We demonstrate that strong typing helps to achieve
this goal, while the language maintains the power of vectorized arithmetic com-
mon in statistical languages, thus fostering the rapid development of statistical
routines.

3 StatPascal

In this section, we describe some basic concepts of StatPascal and its implemen-
tation and compare it with other statistical languages.

3.1 The StatPascal Language Kernel

Huber (2000) points out that a statistical programming language usually pro-
vides a complete language kernel, similar to a general purpose language, with
only a few extensions for statistical computing. He makes a distinction between
the language itself and the statistical and numerical libraries it provides. The
latter ones are addressed as literature written in the particular language. We
therefore start with a description of the kernel of our language.

Because of the clearness of its syntax and the simplicity of its compiler, we
chose Pascal (Jensen and Wirth 1974) as a starting point. StatPascal supports
most of the standard Pascal constructs including a unit concept for creating

libraries. One should note that the selection of a particular syntax effects only
the frontend of the compiler, which can be exchanged easily.

Of course, standard Pascal does not support the typical characteristics of
statistical languages that are described above. However, by adding just two data
structures called vector and matriz, together with extensions to the standard
operators of the language, Pascal becomes attractive in a statistical context.

Our new data structures vector and matrix may be considered as one- and
two-dimensional arrays. In contrast to the standard array structure there is
no need to declare a maximum size. These structures can also be used in
arithmetic expressions and as arguments and return types of functions. The
following technical example shows the usage of these structures. We generate a
data set and display the exceedances above a threshold, followed by the solution
of a system of linear equations.

program demo;
var x, b: vector of real;
A: matrix of real;
begin
x 1= 2 + 3 * GaussianData (100);
writeln (x [x > 5]);
A := MakeMatrix (combine (1.0, 2.0, —2.0
3.0, 1.0, 1.0
2.0, 4.0, 5
writeln (invert (A) * combine (—3.0, 1
end.

The function call GaussianData (100) returns a vector with 100 standard
normal random variates. In the next line, we extract the exceedances above 5 by
indexing with a boolean vector obtained from the expression x > 5. MakeMatrix
creates a matrix from a vector, which is then inverted and multiplied with a real-
valued vector.

The StatPascal compiler generates a code for an abstract stack machine
which is interpreted at runtime. Such an approach has been frequently used in
Pascal implementations (Nori, Ammann, Jensen, Naegeli and Jacobi, 1981). Tt
has the following advantages:

1. The compiler and the runtime environment can be easily ported to another
platform.

2. The resulting binaries are not system dependent.
3. The language can be easily included into a host system.

Of course, it would be desirable to generate a machine code for the host
processor or to output source code of a system programming language like C.
Because our language is strongly typed and does not support reflection or the
insertion of code at run-time, such a compilation is a straight-forward task.

However, we demonstrate in section 3.3 that because vector and matrix opera-
tions are performed by single instructions of the virtual machine, a reasonable
runtime performance can be achieved with our approach.

The language kernel described so far does not contain any graphical or statis-
tical operations. The latter ones could be implemented in StatPascal libraries;
yet, graphical output cannot be achieved that way easily. We show two ways of
combining StatPascal with other systems to provide the desired operations:

1. The language kernel can be included in a software system providing data
management, statistical and graphical facilities. This approach is de-
scribed in the next section.

2. A standalone version of StatPascal is available; yet, it is restricted to a
non-graphical statistical library that currently provides some data gen-
eration routines and estimators for normal, Student and extreme value
distributions. Data handling must be performed by reading and writing
files manually. This version is useful for batch processing or server tasks
when no controlling terminal is attached. With some slight modifications,
it is utilized in the CORBA based client /server environment described in
section 4.

A more detailed description of the language and its standard library is given
in the StatPascal manual (Reiss and Thomas 2005).

3.2 Embedding StatPascal in a Menu System

In the section, we describe the inclusion of StatPascal in the Xtremes package
(Reiss and Thomas, 2001). Xtremes provides facilities to load and manipulate
data sets, a large number of interactive plot options and statistical methods
especially for extreme value and generalized Pareto distributions.

Access to the facilities of a host system is accomplished by adding predefined
functions and procedures to the StatPascal language, which will be compiled to
new instructions of the underlying virtual machine. These instructions can be
handled in an extension of the virtual machine and are used to exchange data
with the host system. Such extensions do not modify the language kernel itself;
they merely enlarge the literature written in (or, in this case, for) the language.

The StatPascal kernel is implemented in C++; extensions are implemented
by enhancing the compiler and virtual machine classes using the inheritance
features of C++ and by linking the resulting code with the target application.
This approach limits the inclusion of the kernel to systems written in languages
that can be linked with C++ code. It would therefore be desirable to encap-
sulate the language kernel using a component framework like CORBA (Object
Management Group, 1995) and to install extensions to the virtual machine by
registering callbacks.

As an example, we show how StatPascal displays a scatterplot of a bivariate
data set loaded in Xtremes and adds a polynomial regression line (see Fig.

1). Although these options are available within the menu system, it can be
convenient to script such a task. The required code is listed next.

program regression;

var x, y, c¢: vector of real;

begin

x := columndata (1);

y := columndata (2);

ScatterPlot (x, y, ’'Scatterplot’);

¢ := PolynomialRegression (x, y, 3);

(x supporting points for regression polynomial *)

x := realvector (min (z), maz (z), 150);

y = (((¢ [4] *) + ¢ [3]) » x + ¢ [2]) « x + ¢ [1];

Plot (z, y, ’'Scatterplot’, ’Regression Polynomial’)
end.

The functions columndata (to retrieve the columns of the active data set of
the menu system), plot and scatterplot have been added to pass the required
data between StatPascal and Xtremes and to perform the graphical output. It
is up to the embedding system to further facilitate the usage of StatPascal
programs, e.g. by making them available as menu options.

3.3 Runtime Performance

In this section, we compare the runtime performance of StatPascal and the R
system. Since our main interest is in the language kernel, we have to avoid calls
to sophisticated predefined functions. Instead, we implement a simple routine
using only vectorized operations and basic functions. We choose the Hill esti-
mator (an estimator for the reciprocal shape index of the tail of a distribution),
which is given by

k
~ 1 Tn—i+1:n
O = — log———, k=1,...,n—1.
" k ; Tn—k:n

Tk < ... < Ty, denote the k + 1 largest values of the data 1, ..., z,.

The following implementations expect a univariate data vector (x1,...,2,)
and return a vector of the Hill estimates (& 1,.-.,Gnn—1). We start with the
R/S version.

hill <~ function(x) {
x <— log(rev(sort(x[x > 0])))
n <— length(x)
cumsum(x)[—n]/(1:(n — 1)) — x[-1]

}

The StatPascal equivalent is given next (realvector is a predefined data type
equal to vector of real).

" _ Xtremes 3.1 Beta

Data Visualize Distribution Estimating Testing Options Window Help

& a3 aer el a5

| e
.“.}ﬁ,, d

program regreszion;
var x, ¥, c: vector of real:

begin
x = columndata (1);
¥o1=

ScatterPlot (x, y. 'Scatterplot'):

columndata (2}

c := PolynomialRegressien (x. v, 2):

{* supporting points for regressicn polynomial *)

x t= realvector (min (x), max (x), 150):

yoa= (fla [2] * x) + g [3]) * x +:2 [21) * 2 + o [1];

SetOolor (ColorRed);

Plot {x, y. 'Scatterplot', 'Regression Polynomisl')
end.

(1007.85, -2.72472) A

Figure 1: StatPascal within Menu-based Statistical System.

function hill (x: realvector): realvector;
var n: integer;

begin
X 1= lgg (Eex; (sort (x [x > 0])));

(Iie.zturn (cumsum (x)) [1..(n-=1)] / (1..(n—=1)) — x [2..n]

)

One can see that R and StatPascal provide similar vectorized operations.
Especially, no explicit loop is required to evaluate the estimator simultaneously
for all values of k. There is a significant difference in runtime performance.
Table 1 shows the execution times for 10000 calls to the Hill estimator, applied
to a newly simulated data set in each call (we used R 1.9, StatPascal and
the GNU C compiler version 3.3.1 with full optimizations under Linux). The
runtime for StatPascal also includes the compilation of the program, while R
had already been started and parsed the routines. The C version was written
carefully eliminating loops whenever possible. It consists of 78 lines, including
an implementation of the quicksort algorithm.

StatPascal clearly outperforms the R system, at the cost of only a small
declarative overhead in the implementation of the estimator. The increased
performance is important for long running simulations and interactive visual-

n R Sp C | SP (loops) Pascal
20 2.05 0.095 0.046 1.04 0.21
50 231 0.21 0.11 291 0.52
100 2.74 0.40 0.23 6.31 1.08
500 | 6.46 2.00 1.26 37.3 5.66
1000 | 11.2 4.08 2.63 81.0 11.5

Table 1: Time (in seconds) for 10000 evaluations of the Hill estimator on 2.4
GHz Intel Xeon processor.

izations.

One also recognizes that the performance of the virtual machine is unsat-
isfactory if the vector oriented extensions are not used; yet, it would be possi-
ble to generate code for a real processor, thus increasing runtime performance
considerably. The last two columns of Table 1 show the execution time of an
unoptimized standard Pascal implementation of the Hill estimator (not utilizing
any vectorized expressions), under StatPascal and the fpc Pascal compiler.

4 A Component Integrating Statistical Environ-
ment

As a descendant of a classical system programming language, StatPascal is not
suited for interactive use. We therefore need some other means to provide
interactivity. In this section, we present a prototype of a client/server based
component integrating statistical environment (called Risktec) where StatPascal
programs are utilized.

We use CORBA as a middleware to manage the communication between
clients and servers. The system is, therefore, open for the provision and usage
of components in other softwares.

It seems important to hide the complexities of CORBA from users of the
system. Within the Risktec environment, there is currently only a single in-
terface definition for the components. They basically implement a function
f:8 x---x8, - T1 x - x T, and provide methods to inform a client
about the number and data types of the arguments and results. Such a minimal
interface serves well for numerical computations and visualizations.

Fig. 2 provides an overview of our environment. One can see that Xtremes
provides a component server (consisting of a factory object (Gamma, Helm,
Johnsson and Vlissides 1995)) that registers prototypes of components that
follow our fixed interface specification. Clients use the component server by re-
questing named prototypes, which are then cloned and returned via a CORBA
object reference. Moreover, a shared library (DLL) provides access to the com-
ponents by means of a procedural interface, allowing the usage of StatPascal
components from systems like MS Excel. More technical details including a

complete interface specification can be found in the RiskTec manual (Reiss and
Thomas 2005).

Xtremes

Xtremes GUI

Component

Factory

StatPascal

StatPascal

Figure 2: Client/Server environment RiskTec.

XGPL (Xtremes Graphical Programming Language, see Thomas and Reiss
(2000) for the description of an early prototype) is a graphical scripting envi-
ronment that allows the interactive combination of components by employing
a graph editor. Nodes within the graph represent operations, while the edges
determine the flow of data and thus the dependencies between nodes. XGPL
provides interactive features like sliders which invalidate and recalculate the
dependent nodes when an input value changes.

The implementation of a StatPascal server component is simple. A spe-
cial program header defining the name of the component and its parameters is
required:

component name;
inports varlist;
outports varlist;

Inports and outports define the input and output parameters of the com-
ponent; they correspond to the sets S; and T; in the above function f. Before
executing the component, the caller sets the input parameters, which become
available as global variables within the program. The values assigned to the
output variables at the end of the program are returned to the caller.

As a simple yet complete example, we retrieve a univariate data set contain-
ing daily exchange rates from a database, calculate the returns (i.e., the daily
relative changes of the prices) and visualize them by means of a kernel den-
sity estimator. The bandwidth can be modified interactively by using a slider.
Figure 3 show the graphical script and its output.

" _ Bandwidth

File Subprogram

CIERETEIRE

L 50,
:

h Ej%lio | 0.0121870 : E—lil

)

4]

0.03 -0.02 -0.01 0.01 0.02 0D.03

Figure 3: StatPascal Components in Graphical Script.

The SQL query node and the slider are implemented within the XGPL sys-
tem. We use two StatPascal components (calcret and kernel) to calculate the
returns and the kernel density. The kernel node returns the supporting points
for a plot of the estimated kernel density, which is visualized using a plot com-
ponent provided by Xtremes.

The complete code for the kernel density component is shown next.

component kernel;

inports z: realvector; h: real;
outports x, y: realvector;

const n = 100;
function kerneldensity (t: real): real;
var zs: realvector;

begin
zs := (z — t) / h;

10

zs := zs [(—=1.0 < zs) and (zs < 1.0)];
return sum (1.0 —zs*%2) % 3.0/(4.0%hxsize(z))

end;

begin
x := realvect (min (z), max (z), n);
y := kerneldensity (x)

end.

The XGPL system visualizes the data types of the input and output pa-
rameters with different colors. Note that the function kerneldensity, which
defines a mapping between real values, is applied to a real vector, resulting in
the automatic generation of a loop over its components.

5 Conclusion

By combining vectorized operations from statistical programming languages and
strong typing from system programming languages, one can create a statisti-
cal language with a good runtime performance. Such a language is well suited
to implement statistical components which may be combined using menu ori-
ented systems, interactive textual scripting languages or graphical programming
environments.

References

[1] Becker, R.A., Chambers, J.M. (1984), S: An Interactive Environment for
Data Analysis and Graphics, Monterey, California: Wadsworth.

[2] Chambers, J.M. (1998), ”Computing with Data: Concepts and Chal-
lenges,” Technical Report, Bell Labs.

[3] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Pat-
terns, Reading, Massachusetts: Addison-Wesley.

[4] Gentleman, R., and Thaka, R. (1997), "The R Language,” in Proceedings
of the 28th Symposium on the Interface, eds. L. Billard and N. Fisher, The
Interface Foundation of North America.

[5] Hardle, W., Klinke, S., and Miiller, M. (2000), Xplore Learning Guide,
Berlin: Springer.

[6] Huber, P.J. (2000), ” Languages for Statistics and Data Analysis,” Journal
of Computational and Graphical Statistics, 9, 600-620.

[7] Jensen, K., and Wirth, N. (1974), PASCAL - User Manual and Report,
Springer.

11

8]

Nori, K.V.; Ammann, U., Jensen, K., Naegeli, H.H., and Jacobi, Ch. (1981),
”Pascal P implementation notes,” in Pascal — The Language and its Im-
plementation, ed. D.W. Barron, Chichester: Wiley.

Object Management Group (1995), The Common Object Request Broker:
Architecture and Specification.

Ousterhout, J.K. (1998), ”Scripting: Higher Level Programming for the
21st Century,” IEEE Computer, 1998, 23-30.

Reiss, R.-D., and Thomas, M. (2005), StatPascal: User Manual and Ref-
erence, http://www.xtremes.de/xtremes/spman.pdf

Reiss, R.-D., and Thomas, M. (2005), RiskTec User Manual,
http://www.xtremes.de/xtremes/risktec.pdf

Reiss, R.-D., and Thomas, M. (2001), Statistical Analysis of Extreme Val-
ues, Basel: Birkh&auser.

Thomas, M., and Reiss, R.-D. (2000), ” Graphical Programming in Statis-
tics: The XGPL prototype,” in Classification and Information Processing
at the Turn of the Millenium, eds. R. Decker and W. Gaul, Berlin: Springer.

12

