maXbox Starter 20

Start with Regular Expressions

1.1 From TRex to RegEx

Regular expressions are the main way many tools matches’ patterns within strings. For example,
finding pieces of text within a larger document, or finding a restriction site within a larger
sequence. This tutorial illustrates what a RegEx is and what you can do to find, match, compare
or replace text of documents or code.

As you will see Regular expressions are composed of characters, character classes,
metacharacters, quantifiers, and assertions. Hope you did already read Starters 1 till 19 at:

http://sourceforge.net/apps/mediawiki/maxbox/

What's a Regular Expression?
A regular expression (RegEx): describes a search pattern of text typically made up from special
characters called metacharacters:

* You can test whether a string matches the expression pattern
* You can use a RegEx to search/replace characters in a string
» It's very powerful, but tough to read

Regular expressions occur in many places and masks, not alone in code or languages
environments:

Text editors, shells or search tools like Grep* allow also RegEx in search/replace functions, like
the following screen-shot figure out.

‘el TextPad - [C:\Documents and Settings\stepp\My Documents\cse190m\0 _lo) x| i
- File. Edit Search \iew Tools Maoos Configure Window Help 5 X
ozl x|
open Firefox EJ_:ror P e El
Console) and type in Sk codtons— Dection —— yen
y = M
whether it works
 It Ches {
- = I taich wholewords &+ Down Close |
<ilmg src=" J.mages/error el
I i - Help
"Exrror Console" /> "' ; Btendselecion __Heo |
- SH e In &l documents
</1li> 4
T a aMemard=Tim Al aw T e ml =manddl Theaman T = mme P e o B

1: Find with RegEx

Let’s jump to history and the beginning of RegEx with Perl. Perl was a horribly flawed and very
useful scripting language, based on UNIX shell scripting and C, that helped lead to many other

! Global Regular Expression Print / Parser

better languages. Perl was and is also excellent for string/file/text processing because it built
regular expressions directly into the language as a first-class data type.

@Many command-line shell Linux/Mac tools (ed, vi, grep, egrep, sed, awk) support Regular
Expressions, for e.g. Grep:

grep -e "[pP]hone.*206[0-9{7}" contacts.txt
>>phone { 206-685-2181}

Grep is a tool that originated from the UNIX world during the 1970's. It can search through files
and folders (directories in UNIX) and check which lines in those files match a given regular
expression. Grep will output the filenames and the line numbers or the actual lines that matched
the regular expression.

1.2 RegEx out of the Box

As you already know the tool is split up into the toolbar across the top, the editor or code part in
the centre and the output window at the bottom or the interface part on the right. Change that in
the menu /View at our own style.

@ In maXbox you will execute the RegEx as a script, libraries and units are already built.

E’Before this starter code will work you will need to download maXbox from the website. It can
be down-loaded from http://www.softwareschule.ch/maxbox.htm (you'll find the download
maxbox3.zip on the top left of the page). Once the download has finished, unzip the file, making
sure that you preserve the folder structure as it is. If you double-click maxbox3.exe the box
opens a default demo program. Test it with F9 / F2 or press Compile and you should hear a
sound. So far so good now we’ll open the example:

309_regex_powertester2.txt

If you can’t find the two files try also the zip-file (48100 bytes) loaded from:
http://www.softwareschule.ch/examples/309 regex powertester2.txt

Now let’s take a look at the code of this fist part project. Our first line is

01 program RegEx_Power_Tester_TRex;

We name it, means the program’s name is above.

& This example requires two objects from the classes: TRegExpr and TPerlRegEx of
PerlRegEx so the second one is from the well known PCRE Lib .

TPerlRegEx is a Delphi VCL wrapper around the open source PCRE library, which implements
Perl-Compatible Regular Expressions.

This version of TPerlRegEx is compatible with the TPerlRegEx class (PCRE 7.9) in the
RegularExpressionsCore unit in Delphi XE. In fact, the unit in Delphi XE and maXbox3 is
derived from the version of TPerlRegEx that we are using now.

Let's do a first RegEx now. We want to check if a name is a valid Pascal name like a syntax
checker does. We use straight forward a function in the box:

732 if ExecRegExpr([a-zA-Z_][a-zA-Z0-9_].*,'pascal_nam e_kon')

then writeln('pascal name valid’) else writeln(‘pascal name invalid’);

This is a useful global function:

function ExecRegExpr (const ARegExpr, AlnputStr: st ring): boolean;

It is true if a string AlnputString matches regular expression ARegExpr and it will raise an
exception if syntax errors in ARegExpr are done.

Now let’s analyse our first RegEx step by step N[a-zA-Z_][a-zA-Z0-9_].*

A matches the beginning of a line; $ the end

[a-z] matches all twenty six small characters fr om 'a'to 'z'
[a-zA-Z_] matches any letter with underscore

[a-zA-Z0-9] matches any letter or digit with under score

. * (adot) matches any character except \n

LK means O or more occurrences

[1 group characters into a character set;

A lot of rules for the beginning, and they look ugly for novices, but really they are very simple
(well, usually simple ;)), handy and powerful tool too. You can validate e-mail addresses; extract
phone numbers or ZIP codes from web-pages or documents, search for complex patterns in log
files and all you can imagine! Rules (templates) can be changed without your program
recompilation! This can be especially useful for user input validation in DBMS and web projects.
Try the next one:

if ExecRegExpr(‘M[ae]liyle?r.*[be]', ‘Mairhuberu)
then writeln('regex maierhuber true’) else writeln('regex maierhuber false');

? Means 0 or 1 occurrences

Any item of a regular expression may be followed by another type of metacharacters — called
iterators. Using this characters you can specify number of occurrences of previous characters so
inside [] , most modifier keys act as normal characters:

/what[."*?]*/ matches "what", "what.", "what!", "wh at?**" .

So a character class is a way of matching 1 character in the string being searched to any of a
number of characters in the search pattern.

Character classes are defined using square brackets. Thus [135] matches any of 1, 3, or 5. A
range of characters (based on ASCII order) can be used in a character class: [0-7] matches any
digit between 0 and 7, and [a-z] matches and small (but not capital) letter.

@ %Note that the hyphen is being used as a metacharacter here. To match a literal hyphen in a

character class, it needs to be the first character. So [-135] matches any of -, 1, 3, or 5. [-0-9]
matches any digit or the hyphen.

What if we want to define a certain place? An assertion is a statement about the position of the
match pattern within a string. The most common assertions are “*”, which signifies the beginning
of a string, and “$”, which signifies the end of the string.

For example search all empty or blank lines: Search empty lines: ‘g

This is how we can assert a valid port number with ~ and $:
745 if ExecRegExpr(\(:\d\d?\d?\d?\d?)$',:80009)

then writeln('regex port true’) else writeln(‘regex port false’);

There are 3 main operators that use regular expressions:

1. Matching (which returns TRUE if a match is found and FALSE if no match is found.
2. Substitution, which substitutes one pattern of characters for another within a string
3. Split, which separates a string into a series of substrings

If you want to match a certain number of repeats of a group of characters, you can group the
characters within parentheses. For example, /(cat){3}/ matches 3 reps of “cat” in a row:
“catcatcat”. However, /cat{3}/ matches “ca” followed by 3 t's: “cattt”.

And things go on. To negate or reject a character class, that is, to match any character EXCEPT
what is in the class, use the caret ~ as the first symbol in the class. [*0-9] matches any
character that isn’'t a digit. [*-0-9] ,matches any character that isn’t a hyphen or a digit.

Now its time to reflect:

N beginning of line

S end of line

char Escape the meaning of char following it

[™] One character not in the set

< Beginning of word anchor

> End of word anchor

() or \(\) Tags matched charactersto beused later (max = 9)
|or \| Or grouping

X\{m\} Repetition of character x, m times (x,m = integer)
X\{m\} Repetition of character x, at least m times
x\{m,n\} Repetition of character x between m and m times

2. Overview of Matches

You can specify a series of alternatives for a pattern using "|" to separate them, so that feelfie|foe
will match any of "fee”, "fie", or "foe" in the target string (as would f(elijo)e). The first alternative
includes everything from the last pattern delimiter ("(", "[" , or the beginning of the pattern)
up to the first "|", and the last alternative contains everything from the last "|" to the next pattern
delimiter.

For this reason, it's common practice to include alternatives in parentheses, to minimize
confusion about where they start and end.

Single I ‘ I I ‘ I Back |
Character Dot Class Anchor Reference

Next a few examples to see the atoms:

rex:= '(no)+.*' ; /[Print all lines containing one or more consec utive

occurrences of the pattern “no”.

rex:= "*S(h|u).* ; //Print all lines containing the uppercase lette r“s’,
followed by either “h” or “u”.

rex:= "*\.[~0]["0].* ; //Print all lines ending with a period and exactl y two
non-zero numbers.

rex:= " *0-9K{6}\..* ; //all lines at least 6 consecutive numbers follow by a

period.

Next we want to see how the objects in the box work:

The static versions of the methods are provided for convenience, and should only be used for one
off matches, if you are matching in a loop or repeating the same search often then you should
create an 'instance' of the TRegEx record and use the non static methods.

The RegEXx unit defines TRegEx and TMatch as records. That way you don’t have to explicitly
create and destroy them. Internally, TRegEx uses TPerlRegEx to do the heavy lifting.
TPerlRegEx is a class that needs to be created and destroyed like any other class. If you look at
the TRegEx source code, you'll notice that it uses an interface to destroy the TPerlIRegEx
instance when TRegEx goes out of scope. Interfaces are reference counted in Delphi, making
them usable for automatic memory management.

& The XE interface to PCRE is a layer of units based on contributions from various people, the
PCRE API header translations in RegularExpressionsAPl.pas

@' maXbox3 Solar mX4Boot Loader Script maxbootscripttxt D o [=[151
Filz ngvam Optlnr\s Yigw Debug Outpuk Help

I ‘ =

H Lnd ': d A, .Rép\aca,ﬁkefacmr i, Rur\ Anpl - SUML UC & o Tueorel 0 Tutotials ‘ _ Resuess | 0

EEEEE | G
- RS e S compare perlregex - regexstudio *¥¥#*srseissrsvis Il Interface List: 309_regex_powertester2 bt

834
var mystr: string; Delphi ReqEX — RegeX Studio // the function shows Delphi RegEx, TRegEx Studio ar
= 7 v g P . g procedure pausel ED(vpatt 5hor15tr’mg); farward;
826 - 3
. procedure LetShowRunverify(apatt: string);
S with TRegExpr.Create do try procedure LetShowRunWerify 2(vpattern: string); //dra
838 //Make 1t case-insensitive procedure letShowVer fy(vpattern: string);
835 ModifierI:= True; procedure Label1Clck_EditPattern(Sender: TObject);
a0 mystr:= '<body> My TRex on Regex</body>'; procedure pausel ED(vpatt: shortstring);
i Expression := '<body.*>(,*2)</body>"; Drocegure éﬁbel iEB\ich,VéritePattern(Semder: TCbject
if E Myst thi procedure ShowlED_TestSeq;
i e xecs(hysMr) e; (Match[1]): Procedure WriteLED Set{sentence: string; arun: boole
Gl) owliessagebligiliate £ procedure FormikeyPress(Sender: TOblect; var Key: Cl
=t finally procedure CloseForm(Sender: TObject; var action: TC
815 Free; procedure loadPForm(v, vy integer);
846 end; procedure [nitPuzzle(vx: byte);
247 procedure INLED_SignPatterns; //add with O at the
aas with TPerlReqEx.Create do try //Perl Delphi RegEX Ejgggggg;eﬁ;gj&g ¢
i Regh:= . :<t1tle> bk LY ?ltle} i end; { of function DecoratelRLs }
850 Opt%ons = [precaseLgs s1:) procedure getREGEXCnline(Sender: TCbject);
851 Subject:= 'testa <title> My TRex on Regex</title> testb': = Drocedure ExtractPhones (const AText @ string; APhor
a5z If Match then *orocedure reExGreed ;
853 ShowMessageBig (Groups[1]) //SubExpressions[1]) ,MatchedText o | h .
5 else procedure thelpl \CoreCo eRegEx
sss showMeszageBig ("Regex Not found'); procedre Delph\CoreCodeRegEx‘Z
. procedure delphiRegexiailfinder;
98 finally // Function ExecRegBxpr(const ARegEXpr, Alnputstr
a7 Free; /{4464 Function RegExprsubExpressions{const AR
858 end; JProcedure SplitRegExpr(const ARegExpr, Almputstr:
EER
o0
GeL //*RrErsaay TMaropCollection EKON 16 EXamples TH#@ssssassssstarssrasrrsssss
8z J/http: //wwme . regexbuddy. com/delphi. himl -
Nw:;r;‘stan:e created of: 309_regex_powertester2.bxt
firstmatch: northwest NW Charles Main 300000.00 4

Regex: ~(\[[A-Za-z0-9,]+\])?([A-Za-z0-9]+:)?([A-Za-z]+ N\ ([~VI)N)?$
Subject:Set(ID,99)

Group 1:[] Group 2:[] Group 3:[Set] Group 4:[ID,99]

K1

3: The two Classes in compare

Clients are seen in picture 3 as the two classes do the same task. After creating the object RegEx
we set the options:
These are the most important options you can specify:

* preCaseless Tries to match the regex without paying attention to case. If set,
'‘Bye' will match 'Bye’, 'bye’, 'BYE' and even 'byE’, 'bYe’, etc. Otherwise, only ‘Bye’
will be matched. Equivalent to Perl's /i modifier.

* preMultiLine The » (beginning of string) and $ (ending of string) regex operaters
will also match right after and right before a newline in the Subject string. This
effectively treats one string with multiple lines as multiple strings. Equivalent to
Perl's /m modifier.

» preSingleLine Normally, dot (.) matches anything but a newline (\n). With
preSingleLine, dot (.) will match anything, including newlines. This allows a
multiline string to be regarded as a single entity. Equivalent to Perl's /s modifier.

* Note that preMultiLine and preSingleLine can be used together.

» preExtended Allow regex to contain extra whitespace, newlines and Perl-style
comments, all of which will be filtered out. This is sometimes called "free-spacing
mode".

« preAnchored Allows the RegEx to match only at the start of the subject or right
after the previous match.

 preUngreedy Repeat operators (?, *, +, {num,num}) are greedy by default, i.e.
they try to match as many characters as possible. Set preUngreedy to use
ungreedy repeat operators by default, i.e. they try to match as few characters as
possible.

%Greedy is a strange operator or option. A slight explanation about "greediness".

"Greedy" takes as many as possible; "non-greedy" takes as few as possible. For example, 'b+'
and 'b* applied to string 'abbbbc' return 'bbbb’, 'b+?' returns 'b’, 'b*?' returns an empty string,
'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.

The regular expression engine does “greedy” matching by default!

A typical RegEXx client session looks like this:

848 with TPerlRegEx.Create do try /[Perl Delphi RegEx

849 RegEx:= '<title>(.+?)</title>' ;

850 Options:= [preCaseLess];

851 Subject:= ‘testa <title> My TRex on Regex</title> testb' ;
852 If Match then

853 ShowMessageBig(Groups| 1]) //SubExpressions[1]) ,MatchedText
854 else

855 ShowMessageBig('Regex Not found');

856 finally

857 Free;

858 end;

Subiject is the RegEx and the string on which Match will try to match RegEx. Match attempts to
match the regular expression specified in the RegEx property on the string specified in the
Subject property. If Compile has not yet been called, Match will do so for you.

Call MatchAgain to attempt to match the RegEx on the remainder of the subject string after a
successful call to Match.

cEx:CompiIe: Before it can be used, the regular expression needs to be compiled. Match will call
Compile automatically if you did not do so. If the regular expression will be applied in time-critical

code, you may wish to compile it during your application's initialization. You may also want to call
Study to further optimize the execution of the RegEXx.

Let's have a look at the RegEXx itself and the magic behind:

'<title>(.+?)</title>'

What's about this <title> , it must be a global identifier to find or still exists.

+7? one or more ("non-greedy"), similar to {1,}?

It captures everything between the first <titte> and the first </title> that follows. This is
usually what you want to do with large sequences in a group.

'@:Greedy names: Greedy matching can cause problems with the use of quantifiers. Imagine

that you have a long DNA sequence and you try to match /ATG(.*)TAG/. The “.*” matches 0 or

more of any character. Greedy matching causes this to take the entire sequence between the first
ATG and the last TAG. This could be a very long matched sequence.

@ Note that Regular expressions don’t work very well with nested delimiters or other tree-like

data structures, such as are found in an HTML table or an XML document. We will discuss
alternatives later in a course.

"._!__!_“ So far we have learned little about RegEx and the past with a TRex eating words as a
book output to us;-). Now it's time to run your program at first with F9 (if you haven't
done yet) and learn something about the 309_regex_powertester2.txt with many code
shippets to explore.

One of them is a song finder in the appendix to get a song list from an mp3 file and play them!

X _=n- /"QU Reld/

$rege

4: Mastering

There are plenty more regular expression tricks and operations, which can be found in
Programming Perl, or, for the truly devoted, Mastering Regular Expressions.
Next we enter part two of the insider information about the implementation.

5: Enter a RegEx building

1.3 RegEx in Delphi and maXbox

The TPerlRegEx class aimes at providing any Delphi, Java or C++Builder developer with the
same, powerful regular expression capabilities provided by the Perl programming language
community, created by Larry Wall.

It is implemented as a wrapper around the open source PCRElibrary.

The regular expression engine in Delphi XE is PCRE (Perl Compatible Regular Expression). It's a
fast and compliant (with generally accepted RegEx syntax) engine which has been around for

many years. Users of earlier versions of Delphi can use it with TPerlRegEx , a Delphi class
wrapper around it.

TRegEx is a record for convenience with a bunch of methods and static class methods for
matching with regular expressions.

I've always used the RegularExpressionsCore unit rather than the higher level stuff because
the core unit is compatible with the unit that Jan Goyvaerts has provided for free for years. That
was my introduction to regular expressions. So | forgot about the other unit. | guess there's either
a bug or it just doesn't work the way one might expect.

For new code written in Delphi XE, you should definitely use the RegEx unit that is part of Delphi
rather than one of the many 3rd party units that may be available. But if you're dealing with UTF-8
data, use the RegularExpressionsCore unit to avoid needless UTF-8 to UTF-16 to UTF-8
conversions.

& The procedure Study procedure Study;

Allows studying the RegEx. Studying takes time, but will make the execution of the RegEx a lot
faster. Call study if you will be using the same RegEx many times. Study will also call Compile
if this had not yet been done.

Depending on what the user entered in Editl and Memol RegEx might end up being a pretty
complicated regular expression that will be applied to the memo text a great many times. This
makes it worthwhile to spend a little extra time studying the regular expression (later on more).

By the way there’s another tool: Compose and analyze RegEx patterns with RegexBuddy's easy-
to-grasp RegEx blocks and intuitive RegEXx tree, instead of or in combination with the traditional
RegEx syntax. Developed by the author of the website http://www.regular-

expressions.info/ , RegexBuddy makes learning and using regular expressions easier than
ever.

O\ Match| & Replace| 7 split [} copy~ [} paste~ | @ send | ~

PCRE ¥ | JGsoft bt Dot matches newline | Case'lnsmsitige-! ~& match atline breaks Free-spacing
Delphifl- for - [@Ewinz2]\. neTHl] PrisefH (P History ey |
+X 08 %

RegexBuddysl |Regex 1

BCreate L1 Test g' Debug [Use o Library @g GREP mForum

[copy .;:' Language: Delphi XE v | Function: Use regex object to replace all matches in a string
Regex object RegexChi v Result text |ResultString

Subject text |SubjectString

var
RegexObj: TRegEx;
ResultString: string;

ResultString := "'
try
RegexDbj := TRegEx.Create('Delphi(for (?:Win32|\.NET)| Prism)?", [rolgnoreCase]);
ResultString := RegexObj.Replace(SubjectString, '"RegexBuddy$1');
except
on E: ERegularExpressionError do begin
// Syntax error in the regular expression
end;
end;

6: The RegexBuddy and the GUI

Conclusion: A regular expression (RegEx or regexp for short) is a special text string for describing
a search pattern. You can think of regular expressions as wildcards on steroids. You are probably
familiar with wildcard notations such as *.txt to find all text files in a file manager. The RegEx
equivalent is .*\.txt$.

7: The Secret behind this Regular Expression!?

Study method example:

Depending on what the user entered in Editl and Memol RegEx might end up being a pretty
complicated regular expression that will be applied to the memo text a great many times. This
makes it worthwhile to spend a little extra time studying the regular expression.

31 with PerlRegExl do begin
RegEx:= Editl.Text;
Study;
Subject:= Memol.Lines.Text;
Replacement:= Edit2.Text;
ReplaceAll;
Memol.Lines.Text:= Subject;
end;

nLTry reformat phone numbers from 206-685-2181 format to (206) 685.2181 format to get
data back:

You can use back-references when replacing text. Text "captured” in () is given an internal
number; use \number to refer to it elsewhere in the pattern \0 is the overall pattern, \1 is the first
parenthetical capture, \2 the second, ...

Example: "A" surrounded by same character: /(.)A\1/

Example: to swap a last name with a first name:

var name = "Durden, Tyler";
name = name.replace(/(\w+),\s+(\w+)/, "$2 $1");
/[" Tyler Durden ")

Time of day: For example. 11:30. [01][0-9]:[0-5][0-9]

would allow such impossible times as 19:00 and 00:30. A more complicated construction works
. That is, a 1 followed by 0, 1, or 2, OR any digit 1-9.

better: (1[012] | [1-9]) :[0-5][0-9]

Vew Debug OupskHelp

won't work well, because it

Y e Ty A (Ce
- Replsceffefactar |« Complel: | | itseCass || Tutords | Remurces | 0

R TIE) D |

s

bitk_animationd.txt] &

Interface List: 298_bitblt_animation3 bt

2 * project :
s * App Nam

ystem Graphic Function overview
98 bitblt animation3, loc's = 292

s« * Purpose : Demonstrates bitmap manipulation - bitmapulation
s * Date 1 09/12/2012 - 17:07

s * History onvert bitblt API to maXbox Nov 2011

. : system save demo for mX3.9.2, finished yet!!

s : animates a self visible autocorrelation with motion control
B EEEREEREER R R R R R AR AR A AA A A A NS AN S AA AT ASAA AR A

11 Program BitBlt Animation3;

12

13 {@BOOL WINAPI MessageBeep(

1 in UINT uType);}

1s //TThreadFunction = function(P: Pointer): Longint; stdcall;

16 //Procedure ExecuteThread(afunc: TThreadFunction; var thrOK: boolean);

v
18 Const MILLISECONDS = 1007
1

21 function MessageBoxTimeOut (hWnd: HWND; lpText, lpCaption: PChar; uType: UINT;
2 wlanguageTd: WORD; dwMilliseconds: DWORD): Integer;

2 external 'MessageBoxTimeoutA@user32.dll stdcall';

2

2s procedure CloseClick(Sender: TObject; var action: TCloseAction); forward;

27 const
2 BACKMAP = 'examples\citymax.bmp's

* Profect : System Graphic Function Overview
/T ThreadFunction = function(P: Pointer): Longi
/Procedure ExecuteThread(afunc: TThreacFunct
function Messax ND; [T

pr ;
[procedure FormbranBitmap(const fname: String
procedure BitmapFormCreate(Sender: TObject);
rocedre TPlayGroundForm_Updatelmage;
lprocedure TPlayGroundForm_Timer 1 Timer(Sen|
procedtre BinClearClick(Sender: TCbject);
procedure CloseClick(Sender: TObject; var actior
procedt.re CloseSuttonClick(Sender: TObject);
orocedtre DbiClickButton(Sender: TCbject);
Iprocedure FormMouseDown(sender: TObject; BL
procedre FormMousebove(Sender: TObject; S
procedhre InitBitmapForm;

procedtre Delay 2StopWatch(msecs: integer);
procedire CallTicker(msecs: infeger);

bt

machine name is: APSN21

user name is: max

0S Type is: 15

15.11.2012 18:18:50 for maXbox3 file

Stop Watch CPU Tester: 0:0:0.656

OO0 mX3 executed: 15.11.2012 20:12:51 Runtime: 0:0:1.484
PascalScript maXbox3 - RemObjects & SynEdit

Animation Form being closed

Ver: 3.9.6.3 (396). Work Dir: E:\maxbox\maxbox3_back

Feedback @

max@Kkleiner.com

Literature:
Kleiner et al., Patterns konkret, 2003, Softwar8&pport

Links of maXbox and RegEx EKON Slide Show:

http://www.softwareschule.ch/maxbox.htm

http://www.softwareschule.ch/download/A Regex EKON16.pdf

http://www.regular-expressions.info/

http://regexpstudio.com/tregexpr/help/RegExp Syntax.html

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

http://sourceforge.net/projects/delphiwebstart

10

1.4 Appendix

EXAMPLE: Mail Finder

procedure delphiRegexMailfinder;
begin
/I Initialize a test string to include some email
normally be your eMail.
TestString:= '<one@server.domain.xy>, another@oth
PR:= TPerlRegEXx.Create;
try
PR.RegEx:= "\b[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]
PR.Options:= PR.Options + [preCaseLess];
PR.Compile;
PR.Subject:= TestString; // <-- tell PR where t
if PR.Match then begin
WriteLn(PR.MatchedText); // Extract first ad
while PR.MatchAgain do
WriteLn(PR.MatchedText); // Extract subseque
end;
finally
PR.Free;
end;
//Readln;
end;

EXAMPLE: Songfinder

with TRegExpr.Create do try

gstr:= 'Deep Purple';
modifierS:= false; //non greedy
Expression:= "#EXTINF:\d{3},'+gstr+' - (["\n].*)’

if Exec(fstr) then

Repeat

writeln(Format (‘Songs of ' +gstr+": %s',
(*if AnsiCompareText(Match[1], 'Woman') >
closeMP3;

addresses. This would

erserver.xyz';

{2,40b;

o look for matches
dress

nt addresses

[Match[1]]));
0 then begin

PlayMP3(‘*..\EKON_13 14 15\EKON16\06_Woman_From_Toky 0.mp3Y);

end;*)
Until Not ExecNext;
finally Free;
end;

//************************************ Cod e F | n IS h e

d******************************

11

1.5 Appendix RegexBuddy in Action

! Match | . Replace 7 Split [copy~ [paste~ |'b Send | >

| V

Dot matches newline | Case msensm\rel ~& rmatch at line breaks Free-spacing

thtpséﬂftp“‘flleﬂ 2/ /[-A-T0-04R@#/%2=~_| 12, . ;1% [-A-Z0-0+8@8/%7=~_|]

ﬂ Create]":_ Test 'gl Debug]Use '_‘5{' Library]EEGREP ‘-m Forum I

[Bxplain Token | B Insert Token » | [Egl, Export~ & | {7 RegexMagic~

1 Assert positit [f Literal Text...
Match the re m Non-printable character o backreference number 1

next alternative only if this one fails)
ﬂ Dot (any character)

ﬂ ASCII character

5| ble, g|\r|ng back as needed (greedv)

Shori=hand character classes Word d}aracter {Ietters, d|glt5 etc.) |

Character class... Mon-word character

POSIX class... Digit (0-9)
W Anchors Non-digit
ﬂ Alternation Whitespace (space, @b, line break, etc.)
Quantifier (repetition)... MNon-whitespace

A charad gm -
ol
A . Capturing group {create backreference)
Narmed ¢ ing aroup

m Mon-capturing group

e Ihfh;r:; . Use backreference...
E Aftomic group

ﬂ Lookaround

[Ed) Mode modifier

ﬁ Comment

P RegexMagic

1.6 Appendix String RegEx methods

.matchfegexp) returns first match for this string against the
given regular expression; if global /g flag i
used, returns array of all matches

[92)

.replacefegexp, text) replaces first occurrence of the regular

expression wi e given text; if global /g flag
th th text; if global /g fl

is used, replaces all occurrences

.search(egexp) returns first index where the given regulay
expression occurs

.split(delimiter[,limit]) breaks apart a string into an array of strings
using the given regular as the delimiter; retlirns
the array of tokens

12

