maXbox Starter 22

Start with Services
1.1 From DLL to COM

COM clients are applications that make use of a COM object or service implemented by another
application or library. The most common types are applications that control an Automation server
(Automation controllers) and applications that host an ActiveX control (ActiveX containers).

Each service is an interface that presents a set of related functions. The implementation of the
interface is hidden within the object.

As you will see a service and other interfaces fall into two basic categories. Hope you did already
read Starters 1 till 21 at:

http://sourceforge.net/apps/mediawiki/maxbox/

In this lesson we deal with OleObjects and his creator.

CreateOleObject creates a single uninitialized object of the class specified by the ClassName
parameter. ClassName specifies the string representation of the Class ID (CLSID).
CreateOleObject is used to create an object of a specified type when the CLSID is known and
when the object is on a local or in-proc server. Only the objects that are not part of an aggregate
are created using CreateOleObject

In a late binding system like that, a type is unknown till runtime. So we use a general type or
intrinsic type called variant. What's a Variant?

A Variant type is capable of representing values that change type dynamically. Whereas a
variable of any other type is statically bound to that type, a variable of Variant type can assume
values of differing types at run-time.

@The Variant type is most commonly used in situations where the actual type to be operated

upon varies or is unknown at compile-time.
While variants offer great flexibility, they also consume more memory than regular variables, and
operations on variants are substantially slower than operations on statically typed values.

E’An advantage of using Variants is that you do not need to import the type library, because
Variants use only the standard IDispatch methods to call the server. The trade-off is that
Variants are slower, because they use dynamic binding at runtime.

In this tutorial we show 3 steps to build a service:

« First building block is the use of the unit code in the script.

e Second we wrap the unit code to built a class unit of the shell code.

* Third we set two service procedures (compress and decompress) to call the class
methods of the unit, it's very powerful, but tough to built.

When | start a service through another one small Ul like a button the service has started
successfully and it is running in the machine. It is running even | restart the machine also. But the
code (Start method of Compress) is executed and takes some time, depending on the size of the
archive, so a thread or more runs in the background.

This will perform compress operation (read and write data) and if records are found then it will
Pause the current thread (i.e. Main/Parent thread) and start MultiThreading® to perform some
copy operation, like the following screen-shot figure out.

actor | o ofompilel Al Uge et | Tutorials

ﬂl ;".-s) .i E=b- ‘il Hﬂ w IilD 363_compress_services2. it

Resourges: |

SiSprocedure TshellZipZipFolder (const sourcefolder: WideStringl
B o Ersetzen von Dateien =
132 SATshellzipZipFolder
193 //steilzip Unzip fexs :’-(". Dieser Ordner enthalt bereits eine Datei "maxbox,mp3",
194
o TShellZip CreateEmpty Méchten Sie die existierende Datel
He - a 57.5§B y

: andert: Samstag, 8. Januar 2011, 22:45:00

197 SrZCompress (exepath+" == SRS A, S ' \maxboxziptest.zip');
188 Writeln('thread count o d'_E:Br e
133 //EDeCompress (exepath o gz:a?'ydfrt: Samstag, B. Januar 2011, 22:45:00 plesimaxboxziptest.zip');
200
201 Compress (exepath+'exs 3a || daale | men | abbedhen | pxboxziptestZ.zip'):
202 Writeln({'thread count
203 DeCompress (exepath+'examples)\ Decompress2’, exepath+'examplesimaxboxziptesti.zip':
204
205 writeln{inttostr(BytesPercardinal));
206 writeln{inttostred (mininted)) ;
z07 writeln(inttostred (maxintéd))
za8 writeln({inttostred {mincardinaly);
208 writeln {inttosStréd (maxcardinal));
210 writeln({inttostr{minnativeint);:
211 writeln{inttostr {maxnativeint)):
AR

1: Compress runs

Let’s jump to history and the beginning of OLE with DDE. Dynamic Data Exchange was first
introduced in 1987 with the release of Windows 2.0 as a method of interprocess communication
so that one program can communicate with or control another program, somewhat like Sun's
RPC (Remote Procedure Call).

@In Delphi code, CreateOleObject is called once to create each new single instance of a

class. To create multiple instances of the same class, we recommend that you use a class factory
for example:

says TComponentFactory.Create(...) with
TPacketInterceptFactory.Create(...).

This process is handled indirectly, through a special object called a class factory (based on
interfaces) that creates instances of objects on demand.

When a client requests a service from a COM object, the client passes a class identifier (CLSID)
to COM. A CLSID is simply a GUID that identifies a COM object. COM uses this CLSID, which is
registered in the system registry, to locate the appropriate server implementation. Once the
server is located, COM brings the code into memory, and has the server create an object
instance for the client.

1Y ou can pause/stop the Main Thread and start again, once Multi Threading task gets completed.

1.2 Compress and Decompress

As you already know the tool is split up into the toolbar across the top, the editor or code part in
the centre and the output window at the bottom or the interface part on the right. Change that in
the menu /View at our own style.

@ In maXbox you will execute the Compress as a script, libraries and units are already built.

E’Before this starter code will work you will need to download maXbox from the website. It can
be down-loaded from http://www.softwareschule.ch/maxbox.htm (you'll find the download
maxbox3.zip on the top left of the page). Once the download has finished, unzip the file, making
sure that you preserve the folder structure as it is. If you double-click maxbox3.exe the box
opens a default demo program. Test it with F9 / F2 or press Compile and you should hear a
sound. So far so good now we’ll open the example:

363_compress_services2.txt

File size: 15572
If you can’t find the two files try also the zip-file (15572 bytes) loaded from:
http://www.softwareschule.ch/examples/363 compress services2.txt

Now let’s take a look at the code of this fist part project. Our first line is

01 programCompressServices2;

We name it, means the program’s name is above.

&~ This example requires two objects from the classes: TShellzip and TMemoryStream of
mX4so the second one is from the well known VCL Lib .

Let’s do a first Compress now. We want to check if our service is valid on your operating system.
We use straight forward the function in the box:

201 Compress(exepath+ ‘examples\earthplay?2’ ,

exepath+ 'examples\maxboxziptest2.zip');

Those are useful global procedures:

8488: Procedure Compress(azipfolder, azipfile: stri ng)";
8489: Procedure DeCompress(azipfolder, azipfile: st ring)";

It is valid if a string azipfolder matches what the file system expects.

5'& @ If its not find a valid folder or file to compress it says:

>>> Variant is null, cannot invoke.

So the magic behind is the wrapped object:

160 pr ocedur e XCompress(azipfolder, azipfile: st ring);
161 begin
162 wit h TShellZip.create do begin

163 zipfile:= azipfile;
164 ZipFolder(azipfolder);
165 Free;

166 end;
167 //compress
168 end;

There are 3 main operators that use this object of the service routine XCompress:

1. Constructor (creates the object TShellZzip which returns a reference.
2. Property: zipfile, which sets the filename for another zipfile within a string
3. Method: ZipFolder(), which passes the folder to compress.

But what happens behind the method ZipFolder ?

We call or invoke a shell object! Another way to use dispatch interfaces is to assign the

122 shellobj := CreateOleObject(‘Shell.Application’);

to a Variant. By assigning the interface returned by CreateOleObject to a Variant, you can take
advantage of the Variant type's built-in support for interfaces. Simply call the methods of the
interface, and the Variant automatically handles all IDispatch calls, fetching the dispatch ID and
invoking the appropriate method.

V: Variant; //schema

begi n

V:= CreateOleObject("TheServerObject");
V.MethodName; { calls the specified method }

As you already know an advantage of using Variants is that you do not need to import the type
library, because Variants use only the standard IDispatch methods to call the server. The trade-
off is that Variants are slower, because they use dynamic binding at runtime.

69 Try
70 Result:= shellObj.NameSpace(ax);
71 Except

The Windows Shell provides a powerful set of automation objects that enable you to program
the Shell with maXbox and scripting languages such as PascalScript or JScript (compatible with
ECMA 262 language specification. You can use these objects to access many of the Shell's
features and dialog boxes. For example, you can access the file system, launch programs,
compress or decompress like in our case and change system settings.

& You can also instantiate many of the Shell objects with late binding, as we do. You can call
this also scriptable Shell objects with late binding.

Many of the Shell objects became available in version 4.71 of the Shell. Others are available in
version 5.00 and later. Version 5.00 became available with Win2000. The following table lists
each Shell object under the version of the Shell in which the object became available.

| Version 4.71 [Version 5.00 |
[Folder IDI DiskQuotaUser |
[FolderltemVerb IDiskQuotaControl |
[Folder ItemVerbs |[Folder? |

[Shell [Eolder I tem |
ShellFolder View IFolderItems |
[ShellUlHelper [Folder Items2 |
ShellWindows I ShellDispatch2 |
\WebViewFolder Contents HI ShellL inkDual2 \
| ShellFolder Item |
| [shellL inkObj ect |

The Shell object represents the objects in the Shell. You can use the methods exposed by the
Shell object to:

* Open, explore, and browse for folders.

. Minimize, restore, cascade, or tile open windows.
* Launch Control Panel applications.

» Display system dialog boxes.

Users are perhaps most familiar with the commands they access from the Start menu and the
taskbar's shortcut menu. The taskbar's shortcut menu appears when users right-click the taskbar.
The following HTML Application (HTA) produces a start page with buttons that implement many
of the Shell object's methods. Some of these methods implement features on the Start menu and
the taskbar's shortcut menu.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb776890%28v=vs.85%29.aspx

Next a few examples to see the use of OleObiject:

{The following code shows an example of how to crea te an Ole Object and how
to perform specific operations.}

http://docs.embarcadero.com/products/rad_studio/del phiAndcpp2009/HelpUpdate2/EN/htm
I/delphivclwin32/ComObj_CreateOleObject.html

pr ocedur e TForm1.ButtonClick(Sender: TObject);
var
WordApp, NewDoc: Variant ;
begi n
{ Creates a Microsoft Word application. }
WordApp := CreateOleObject("Word.Application');
{ Creates a new Microsoft Word document. }
NewDoc := WordApp.Documents.Add;
{ Inserts the text 'Hello World!" in the document. }
WordApp.Selection.TypeText('Hello World!");
{ Saves the document on the disk. }
NewDoc.SaveAs('my_new_document.doc');
{ Closes Microsoft Word. }
WordApp.Quit;
{ Releases the interface by assigning the Unassigne d constant to the
Variant variables. }
NewDoc := Unassigned;
WordApp := Unassigned;
end;

& As shown in the example, you can release the interface stored in the returned Variant by
assigning the Unassigned constant to that Variant.

As shown in the example, if the interface returned by CreateOleObject is assigned to a Variant,
you can release the interface by assigning the Unassigned constant to that Variant.

You can also use the OBJECT element to instantiate Shell objects on an HTML page. To do this,
set the OBJECT element's ID attribute to the variable name you will use in your scripts, and
identify the object using its registered number (CLASSID).

Now comes the fun part of our compressed file or folder, this is how it looks like to set the HEX as
ASCII Wingdings:

de o20[0em XE 6221 M EXSsOOeN =

X2 221, xmemoOxssmnm OneeOnm
me Q| SONSeMpenboeri he Ko
SSee XVl L2 60 S5 FSOXTme=
O mMpSom ONMenmSsen oM xméemad
XS, HE SeeXVoRXEY, 62201, THS
X VoEM 2 MHOmM¢SSHe 00 62255¢6
SSOXomée @D

Wingdings are a series of dingbat fonts which render letters as a variety of symbols. They were
originally developed in 1990 by Microsoft by combining glyphs from Lucida Icons, Arrows, and
Stars licensed from Charles Bigelow and Kris Holmes.

%
iml il -
=10l x|

TE=8 Kopierer ‘masmar. T R & > T e |
[ctor L cComplet | U ue 1 Tutords | Resources)
e _coel | T & e 1 & [0 363 _compress servesz.txt
3 = 184 var — 2l Interface List: 363_compress_services2.be

185 //incomeReal: TIncomeReallIntf; - = dure CreateEmptyZ]

185 interlist: Tstringlist; “maxpadde bp" PLOGBALE e S p 2D,

o i: integer: g P neipedds bup function GethameSpaceDbi(x CleVariant):Ole
T St g 5 ; function GethameSpaceDbi_zipfile: Olevariant]

18 begin . UocHeron e cxsieronie Haia procedure ZipFolder(const sourcefolder: Wide

189 //avilibMultiple. DecompressFile ("h 3 2.05K8 procedure Unzip(const targetfolder: WideStrir

is0 //procedure TShellZipzipFolder (cor CRE G SHR I SRR function NurmProcessThreads2: integer;

191 mit dieser ers function IsValidDispatch(const v: OleVariant): B

192 //TShellZipBipFolder (exepath+'exan 3 2.05K8 ;uncgon EQ&}E!D_gemamegpaceggj(a& f\‘/a”g‘

; : o gedndert: Somntag, 9. Januar 2011, 13:48:00 Unction TShellZip_GetNameSpaceCbi_zipfile:

153 //Tshellzip Unzip(exepath+'example _J|procedure TehellZip. CreateEmptyzip;

e) . la | ede | tem | abbrechen | procedure TshellZipZipFoldericonst sourcefolder

135 Tshellzip_CreateEmptyzip; proced.re T5hellZip_Unzip(const targetfolder: W

135 procedure XCompress(azipfolder, azipfile: string)]

157 //XCompress (exepath+'examples\earthplayZ', exepath+'examples\maxboxziptest.zip'); procedure XDeCompressiazipfolder, azipfile: strir

12 Writeln('thread count: '+inttoStr(NumProcessThreads)): fprocedure TShellZipZipFolder(const sourcefo

133 //EDeCompress (exepath+'examples\DecompressZ', exepath+'examples\maxboxziptest,zip');

200

zoL Compress (exepath+'examplesiearthplay2', exepath+'examples\maxboxziptest2.zip');

202 Writeln('thread count: '+inttoStr(NumProcessThreads)):

203 DeCompress (exepath+'examples\Decompress2’, exepath+'examples\maxboxziptestz.zip'):

204

205 writeln(inttosStr{BytesPerCardinal));

206 writeln(inttostréd (minintéd))

207 writeln{inttoStred (maxinted)):;

20g writeln(inttostré4 (mincardinal));

208 writeln{inttoStr6d (maxcardinal)});

|makbox3 E:\maxboximaxbox3iexamples|363_compress_services2 bxt Compiled done: 12.05.2013 17:46:37 Memoryload: 67%

2: Decompress step by step in compare

Clients are seen in picture 2 as the two classes do the tasks. After creating the shell object we set
the options or filter of the folder.

6

These are the most important options you can specify:
The Folder object represents a Shell folder. You can use the methods exposed by the Folder
object to:

. Get information about a folder.
. Create subfolders.
« Copy and move file objects into the folder.

The Folderltem object represents an item in a Shell folder. Its properties enable you to retrieve
information about the item. You can use the methods exposed by this object to run an item's
verbs, or to retrieve information about an item's FolderltemVerbs object.

There are plenty more shell script expression tricks and operations, which can be found in
Programming, or, for example a really simple one at the end:

How can we show the run dialog?
pr ocedur e TForm1l_FormCreateShowRunDialog;

var

ShellApplication: Variant;

begi n
ShellApplication:= CreateOleObject('Shell.Application');
ShellApplication.FileRun;

end;

Conclusion: CreateOleObject returns a reference to the interface that can be used to
communicate with the object. For CreateOleObject this interface is of type IDispatch . To
create a COM object that does not support an IDispatch interface, use CreateComObject

Time of the day: Study more about the theory of Data Compression:

http://www.data-compression.com/theory.shtml

Claude E. Shannon formulated the theory of data compression. Shannon established that there is
a fundamental limit to lossless data compression. This limit, called the entropy rate, is denoted by
H. For example:

The implicit unpredictability or randomness of a probability p can be measured by the extent to
which it is possible to compress data like a tar or zip archive:

much compressible -> less random -> more predictabl e

This is the entropy, a measure of how much randomness (unpredictable) it contains.
To explain entropy with a coin goes like this: E.g. a fair coin has two outcomes, each with a
probability of 1/2 so the entropy is

1/2log2+1/2log2=1

PrintF('max. Entropy of coin 0.5p: %f',[0.5*log2(2) +0.5*l0g2(2)]);
> max. Entropy of coin 0.5p: 1.00

H = Z p;log, p; bits/character.

i=1

R Sl=ks]
‘ i Tl Ty 2 -AV"E]" i 1% 2
tor |+ compiel WeCss | Tk | Resoutes | o Semsl RIAFEEN i
eI e r— 3
W T LT T T e T T P et smatzraot] 2] [nferface List: 208 bIIDIL_animation3.bet
* Project : System Graphic Function Overview B ot - Syetom Gethie Fucion O
3 * App Name : 298 bitblt animation3, loc's = 292 mT’ng:; e f’unct“;{gcp‘gﬁv;ﬁ’g’%‘
« * purpose : Demonstrates bitmap manipulation - bitmapulation b e L R Ll b
s * Date 1 09/12/2012 - 17:07 {ﬁm AToE ot T c 11 s
¢ * History : convert bitblt API to maXbox Nov 2011 o

: system save demo for mx3.9.2, finished yet!!
8 : animates a self visible autocorrelation with motion control procedure FormDrawBitmap(const fname: ing.
T e O U NI T T SR) proceckre BitmapFormCreate(Sender: TObject);
procedre TPlayGroundForm_Updatelmage;

10
- R lprocediure TPlayGroundForm_Timer 1 Timer(Senc|

QRCzogmam BIEELL Animarlionsy procedure BirClearClick(Sender: TObject);

12 lprocediure CloseClick(Sender: TObject; var actior|

12 (@BOOL WINAPI MessageBeep(procedre CloseButtonClick(Sender: TObject);

1 __in UINT uType):} procedre DbiClickButton(Sender TObject);

1s //TThreadFunction = function(P: Pointer): Longint; stdcall; iprocedure FormMouseDown(sender: TObject; Bu

Iprocedure FormMouseMove(Sender: TObject; Sh
lprocediure InitBitmapForm;

il procedure Delay25topiWatch(msecs: integer);

i Const MILLISECONDS = 100: [procedre CallTicker(msecs: integer);
1

16 //Procedure ExecuteThread(afunc: TThreadFunction; var thrOK: boolean);

2
2 function MessageBoxTimeout (hwnd: HWND; lpText, lpcCaption: PChar; uType: UINT:
2 wLanguageId: WORD; dwMilliseconds: DWORD): Integer;

external 'MessageBoxTimeoutA@user32.dll stdcall';

25 procedure CloseClick (Sender: Tobject; var action: TCloseAction); forward:
3

p
27 Const
s BACKMAP = 'examples\ citymax.bmp'; <
i it
machine name is: APSN21 E
user name is: max
0S Type is: 15

15.11.2012 18:18:50 for maXbox3 file

Stop Watch CPU Tester: 0:0:0.656

D00 mX3 executed: 15.11.2012 20:12:51 Runtime: 0:0:1.484
PascalScript maXbox3 - RemObjects & SynEdit

Animation Form being closed

Ver: 3.9.6.3 (396). Work Dir: E:\maxbox\maxbox3_back

e [—

Feedback @

max@Kkleiner.com

Literature:
Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maxXbox and Data Compression:

http://www.softwareschule.ch/maxbox.htm

http://msdn.microsoft.com/en-us/library/windows/desktop/bb776890%28v=vs.85%29.aspx

http://sourceforge.net/projects/maxbox
http://sourceforge.net/apps/mediawiki/maxbox/
http://sourceforge.net/projects/delphiwebstart

1.3 Appendix

EXAMPLE: ProglD of Shell Objects

The ProglID for each of the Shell objectsis shown in the following table.

Object
DIDiskQuotaUser
DiskQuotaControl
Folder
Folder2

Folderltem

Folderltems
Folderltems2
FolderltemVerb
FolderltemVerbs
| ShellDispatch2

| ShellL inkDual2

Shell
ShellFolderItem
ShellFolder View
ShellFolder ViewOC

ShellL inkObj ect

ShellUlHelper
ShellWindows
WebViewFolder Contents

Progl D
Microsoft.DiskQuota.1
Cannot late bind
shell.Shell _Application.NameSpace("...")
shell.Shell _Application.NameSpace("...")

shell.Shell _Application.NameSpace("...").Self or
Folder.Items.Item or Folder.ParseName

Folder.ltems

Folder.ltems

Shell.NameSpace("...").Self.Verbs.ltem()
Folderltem.Verbs or Shell.NameSpace("...").Self.Verbs
shell.Shell_Application

Shell.NameSpace("...").Self.GetLink or
Shell.NameSpace("...").Items().GetLink

shell.Shell_Application

Shell.NameSpace("...").Self or Shell.NameSpace("...").Items()
Cannot late bind

Cannot late bind

Shell.NameSpace("...").Self.GetLink or
Shell.NameSpace("...").Items().GetLink

Cannot late bind
shell.Shell_Windows or ShellWindows. NewEnum
Cannot late bind

