

maXbox Starter 15
Start with Serial Programming

1.1 Set an Interface
Today you begin to learn about serial programming in Object Pascal. If you are new to peripheral
programming, at first glance it might appear astonishing.
Today I'll try to eliminate any confusion by presenting a clear picture of the labyrinth known as serial
programming. First, I'll give you an overview of the RS 232 standard. After that I'll go over some of the
data specification with the serial tester included in maXbox.

Serial communication is based on a protocol and the standard RS 232. A protocol is one or a few sets
of hardware and software rules agreed to by all communication parties for exchanging data correctly
and efficiently.
RS-232C, EIA RS-232, or simply RS-232, refers to the same standard defined by the Electronic
Industries Association in 1969 for serial communication.
We will concentrate on creating a serial call of a component using a class TSerial from a component
which calls the winapi dll library. But, first of all I'll explain you what "blocking clock" and "non-
blocking signal" calls are. In fact there are 2 programming models used in communication driven
applications:

• Synchronous or share the same clock
• Asynchronous or non timing signal

1.1.1 Synchronous and Asynchronous Communications

Don’t confuse it with parallel programming (simultaneous) in which we can have two synchronous
functions but each in a separate thread to split and speed up the results.
Sure, two asynchronous functions can be started at the same time if they can handle parallel
processing.
Synchronous Communication requires the sender and receiver to share the same clock. The sender
provides a timing signal to the receiver so that the receiver knows when to "read" the data.
Synchronous Communication generally has higher data rates and greater error-checking capability. A
printer is a form of Synchronous Communication.

Asynchronous Communication has no timing signal or clock. Instead, it inserts Start/Stop bits into
each byte of data to "synchronize" the communication. As it uses less wires for communication (no
clock signals), Asynchronous Communication is simpler and more cost-effective. RS-232/RS-485/RS-
422/TTL are the forms of Asynchronous Communications.

Hope you did already work with the Starter 1 to 14 available at:

http://www.softwareschule.ch/maxbox.htm

www.softwareschule.ch 2

Non Blocking means that the application will not be blocked when the application plays a sound or a
socket read/write data. This is efficient, because your application don't have to wait for a sound or
signal result or a connection. Unfortunately, using this technique is little complicated to develop a
protocol. If your protocol has many commands or calls in a sequence, your code will be very
unintelligible.

����A function which returns no data (has no result value) can always be called asynchronously,
cause we don’t’ have to wait for a result or there’s no need to synchronise the functions.

1.1.2 Drill Down: Bits and Bytes
Internal computer communications consists of digital electronics, represented by only two conditions:
ON or OFF. We represent these with two well known numbers: 0 and 1, which in the binary system is
termed a Bit.
A Byte consists of 8 bits, which represents decimal number 0 to 255, or Hexadecimal number 0 to FF.
As described above, a byte is the basic unit of Asynchronous communications.
The baud rate is the communication speed that measures the number of bit transfers per second. For
example, 19200 baud is 19200 bits per second.

Data bits are a measurement of the actual data bits in a communication packet. For example, the
above graphic shows eight (8) data bits in a communication packet. A communication packet refers to
a single byte transfer, including Start/Stop bits, Data bits and Parity. If you are transferring a standard
ASCII code (0 to 127), 7 data bits are enough. If it is an extended ASCII code (128 to 255), then 8 data
bits are required.

Parity is a simple way to error-check. There are Even, Odd, Mark and Space indicators. You can also
use no parity. For Even and Odd parity, the serial port sets the parity bit (the last bit after the data bit)
to a value to ensure that the data packet has an Even or Odd number of logic-high bits. For example, if
the data is 10010010, for even parity, the serial port sets the parity bit as 1 to keep the number of
logic-high bits Even. For Odd parity, the parity bit is 0 so that the number of logic-high bits is Odd.
Mark parity simply sets the parity bit to logic-high and Space sets the parity bit to logic-low, so that the
receiving party can determine if the data is corrupted.

Stop bits are used to signal the end of a communication packet. This also helps to synchronize
different clocks on the serial devices.

Let’s begin with the communication structure process in general of an API call:
Signal functions in the EIA232 standard can be subdivided into six categories.

1. Signal ground and shield.

2. Primary communications channel (includes flow control signals).

3. Secondary communications channel. When implemented, this is used for control of the remote
modem, requests for retransmission when errors occur, and governance over the setup of the primary
channel.

4. Modem status and control signals. These signals indicate modem status and provide intermediate
checkpoints as the telephone voice channel is established.

5. Transmitter and receiver timing signals. If a synchronous protocol is used, these signals provide
timing information for the transmitter and receiver, which may operate at different baud rates.

6. Channel test signals.

www.softwareschule.ch 3

����The standard does not define such elements as the character encoding or the framing of
characters, or error detection protocols. The standard does not define bit rates for transmission,
except that it says it is intended for bit rates lower than 20,000 bits per second. Many modern devices
support speeds of 115,200 bit/s and above.
Over the 40+ years since this standard was developed, the Electronic Industries Association published
three modifications, the most recent being the EIA232F standard introduced in 1997. Besides
changing the name from RS232 to EIA232, some signal lines were renamed and various new ones
were defined, including a shield conductor.

If you click now on the menu </Output/Serial RS232/…> you can see almost all the settings
(configuration) loaded by the app.

25 TSerialConfig = record

 Valid: boolean; // true: parameters are valid

 COMPort: integer; // interface

 Baudrate: integer; // transfer rate

 DataBits: TDataBits; // count of data bi ts

 ParityBit: TParityBit; // parity

 StopBits: TStopBits; // count of stop bi ts

 BufSizeTrm: integer; // size of send buf fer

 BufSizeRec: integer; // size of receive buffer

 HandshakeRtsCts: boolean; // Hardwire-Handsha ke RTS/CTS

 HandshakeDtrDsr: boolean; // Hardwire-Handsha ke DTR/DSR

 HandshakeXOnXOff: boolean; // Handshake XOn/XO ff-protocol

 RTSActive: boolean; // RTS-Output if no handshaking

 DTRActive: boolean; // DTR-Output if no handshaking

 XOnChar: char; // XOn-Sign

 XOffChar: char; // XOff-Sign

 XOffLimit: integer; // XOff-Limit

 XOnLimit: integer; // XOn-Limit

 ErrorChar: char; // error sign chara cter

 EofChar: char; // EOF-sign

 EventChar: char; // event sign

 ContinueOnXOff: boolean; // continue transfe r despite XOff

 UseErrorChar: boolean; // use error sign

 EliminateNullChar: boolean; // delete null sign

 AbortOnError: boolean; // break on error

 RecTimeOut: integer; // timeout (ms) for data receive (0=no timeout)

 TrmTimeOut: integer; // timeout (ms) for data transfer (0=no timeout)

 end

� � � � Signal names that imply a direction, such as Transmit Data and Receive Data, are named from
the point of view of the DTE device. If the EIA232 standard were strictly followed, these signals would
have the same name for the same pin number on the DCE side as well. Unfortunately, this is not done
in practice by most engineers; probably because no one can keep straight which side is DTE and
which DCE is.

www.softwareschule.ch 4

1: Result as of the loaded Modules

1.2 Code with Output Menu
As you already know the tool is split up into the toolbar across the top, the editor or code part in the
centre and the output window shell like a song length protocol result at the bottom.
Included in the package maXbox is the integrated Test Unit as an add-on listed on the menu
/Output/Serial RS232/ . We show the tool to test some settings, see below TSerial Testbox.

If you set the flag SND_NOSTOP we get an interesting constellation.
This specified sound event will yield to another sound event that is already playing. If a sound cannot
be played because the resource needed to generate that sound is busy playing another sound, the
function immediately returns FALSE without playing the requested sound.
If this flag is not specified, PlaySound attempts to stop the currently playing sound so that the device
can be used to play the new sound (again).

��������
Discussion:
I have an app that has a background sound and a sound when someone clicks something. But when
they click the something sound it stops the background sound, which is supposed to loop. How can I
play both sounds and leave the background looping?

Answer:
I'm 99% sure that the PlaySound API (which SoundPlayer.Play is wrapping) does not support this
no matter how you do it. You will have to look at something like DirectX or multithreading if you really
want to do this.
I'm trying to get the SoundPlayer to play two wav files at the same time. The documentation says is
should play asynchronously but when I try, it seems to end the play of the first SoundPlayer as soon
as the second one starts to play.
I read the documentation, and it doesn't imply that it will merge the two sounds, merely that the
method call is asynchronous. Internally PlaySound calls the PlaySound API from mmsystem.h , with
the parameters SND_ASYNC and SND_NODEFAULT. This means so far that "The sound is played
asynchronously and PlaySound returns immediately after beginning the sound..." and "No default
sound event is used. If the sound cannot be found, PlaySound returns silently without playing the
default sound."

����So, as far as I can see it implies that the API call queues up the sounds to be played, and the
method returns when your sound starts playing, so there’s no parallel processing possible!

����Before this starter code will work you will need to download maXbox from the website. It can be
down-loaded from http://sourceforge.net/projects/maxbox site. Once the download has finished, unzip

www.softwareschule.ch 5

the file, making sure that you preserve the folder structure as it is. If you double-click maxbox3.exe
the box opens a default program. Make sure the version is at least 3.8 because Modules Count use
that. Test it with F2 / F9 or press Compile and you should hear a sound a browser will open. So far so
good now we’ll open the example:

263_async_sound.txt

If you can’t find the file use the link (size 3 KB, 2666 Bytes):

http://www.softwareschule.ch/examples/263_async_sound.txt

Or you use the Save Page as… function of your browser1 and load it from examples (or wherever
you stored it). One important thing: The mentioned DLL must reside on your disk. Now let’s take a look
at the code of this project first with the declaration of the DLL. Our first line is

6 Program ASYNC_Sound_Parallel;

We have to name the program it’s called ASYNC_Sound_Parallel; next we jump to line 8:

7

8 function PlaySound(sres: pchar; hmod: HMODULE; syncflag_: d word): bool;

9 external 'PlaySound@winmm.dll stdcall ';

First in line 8 we ask to set function parameters of a DLL. Parameters are important for all IT systems
that offer interfaces for user or programming access. Particularly, this includes machines in the private
and commercial sector as well as services like electronics or multimedia. In these cases the
external declaration is usually done by entering a DLL name and the according function name.

����As we now know, PlaySound can't play two sounds at the same time, even if you do use async
flag. You might be able to get this to work by having two separate threads both calling PlaySound
synchronously.

1.2.1 Media Player
The "MediaPlayer" object will not let you play two sounds at once, even if you create two instances.
You will need to bring in the native windows API "mciSendString ".

You can test it with F4 or menu /Output/New Instance which opens a second instance of maXbox
(see the following screenshot) with the same script!
An example of the low-level mciSendString() :

mciSendString(@"open C:\Users\Desktop\applause.wav type waveaudio alias
applause", null, 0, IntPtr.Zero);
mciSendString(@"play applause", null, 0, IntPtr.Zer o);

mciSendString(@"open C:\Users\Desktop\foghorn.wav t ype waveaudio alias
foghorn", null, 0, IntPtr.Zero);
mciSendString(@"play foghorn", null, 0, IntPtr.Zero);

So your code will now show all three possibilities in a sequence. First with start with a dialog which
stops the control flow because it’s a modal dialog we have to wait and pass it. Second on line 28 our
function is called in sync-mode sync and we have to wait or in other words we are blocked. Third in
line 30 we call the same function with the async flag set to 1 and now you can follow at the same time
the music plays and a loop of numbers on the output can be seen.
In line 33 we start almost the same time a sound twice, yes it’s the same sound therefore you can hear
the delay or an echo to prove its parallel! Ok. It’s a trick to open another function with the same song
to show the simultaneous mode.

1 Or copy & paste

www.softwareschule.ch 6

If you increase the delay of sound (for example with sleep or with a massive CPU payload), the echo
effect space grows to more than milliseconds time of its start offset.

//Result:= Writeln(FloatToStr(IntPower(62,8))) = 21 8340105584896

27 ShowMessage('the boX rocks ' + MYS)

28 PlaySound(pchar(ExePath+ 'examples\maxbox .wav'), 0, 0); //Sync

29 Sleep(20)

30 PlaySound(pchar(ExePath+ 'examples\maxbox.wav '), 0, 1); //Async

31 //Parallel

32 //sleep(20)

33 closeMP3;

34 playMP3(mp3path); //Parallel Trick

35 for i:= 1 to 2300 do

36 writeln(intToStr(i) + ' Aloha from ObjectPascal Bit ');

37 sleep(1250)

38 inFrm.color:= clblue;

39 //inFrm.close ;

40 End.

����This sleep is here just so you can distinguish the two sounds playing simultaneously.

By the way: You can also set a hash function around a sound file to distinguish it.
A hash function is a (mathematical) function which receives an input of arbitrary length and returns a
function value (hash value) of a fixed length (usually 128 or 160 bits).

2. TSerial Testbox

Till now we are discussing the topics of sync and async calls and the way it processes the calls by
the receiver parallel or not. Asynchronous calls or connections allow your app to continue processing
without waiting for the process (function) to be completely closed but not always in a simultaneous

www.softwareschule.ch 7

mode. Therefore we come now to the discussion about real parallel programming with threads
(multithreading) or multiprocessing programming.

1.2.2 Checksum
Many serial protocols use checksum (additional bytes added at the end of the data string) to check the
data integrity, as errors might occur during data transmission.

There are many types of checksum, from the simplest uses of it in Modula or BCC to sophisticated
CRC calculation. Using Modula as an example, we learn that before data transmission, the sender
adds all command bytes together then mod it by 255 (decimal) to get an additional byte. This is to be
added at the end of the command string. When the receiver receives the command string, it will first
check the added byte to see whether data remain unchanged or not. If that is the case, it will accept
the data, and if not, it will ask the sender to resend the data.

1.2.3 Examples of protocol commands
A protocol command is a data string sent from one serial device (e.g. a Computer) to another (i.e. a
Modem). Here are some examples:

ASCII command example: ATI1<CR><LF> to query Modem manufacturer's information. (Note:
<CR><LF> are the control codes: Carriage Return and Line Feed)

Convert the command string above to Hexadecimal and it becomes:
41 54 49 31 0D 0A

Convert the command string above to Decimal and it becomes:
065 084 073 049 013 010

Convert the command string above to Octal and it becomes:
101 124 111 061 015 012

Convert the command string above to Binary and it becomes:
01000001 01010100 01001001 00110001 00001101 00001010

1.3 Notes about Threads (remake)

Multi-threaded applications are applications that include several simultaneous paths of execution.
While using multiple threads requires careful thought, it can enhance your programs by:

• Avoiding bottlenecks. With only one thread, a program must stop all execution when
waiting for slow processes such as accessing files on disk, communicating with other
machines, or displaying multimedia content. The CPU sits idle until the process
completes. With multiple threads, your application can continue execution in separate
threads while one thread waits for the results of a slow process.

• Organizing program behaviour. Often, a program's run can be organized into several
parallel processes that function independently. Use threads to launch a single section
of code simultaneously for each of these parallel cases.

• Multiprocessing. If the system running your program has multiple processors, you can
improve performance by dividing the work into several threads and letting them run
simultaneously on separate processors.

One word concerning a processing thread: In the internal architecture there are 2 threads categories.

• Threads with synchronisation (blocking at the end)
• Threads without synchronisation (non blocking at all)

In case you’re new to the concept, a thread is basically a very beneficial alternative (in most cases) to
spawning a new process. Programs you use every day make great use of threads whether you know it
or not but you have to program it.

www.softwareschule.ch 8

The most basic example is whenever you’re using a program that has a lengthy task to achieve (say,
downloading a file or backing up a database), the program (on the server) will most likely spawn a
thread to do that job.
This is due to the fact that if a thread was not created, the main thread (where your main function is
running) would be stuck waiting for the event to complete, and the screen would freeze.
For example first is a listener thread that “listens” and waits for a connection. So we don't have to
worry about threads, the built in thread will be served by for example Indy though parameter:

 IdTCPServer1Execute(AThread: TIdPeerThread)

When our DWS-client is connected, these threads transfer all the communication operations to
another thread. This technique is very efficient because your client application will be able to connect
any time, even if there are many different connections to the server.
The second command "CTR_FILE" transfers the app to the client:

Or another example is AES cryptography which is used to exchange encrypted data with other users
in a parallel way but not a parallel function. It does not contain functions for key management. The
keys have to be exchanged between the users on a secure parallel channel. In our case we just use a
secure password!

88 procedure EncryptMediaAES(sender: TObject);

106 with TStopwatch.Create do begin

107 Start;

108 AESSymetricExecute(selectFile, selectFile+ '_encrypt' ,AESpassw);

109 mpan.font.color:= clblue;

110 mpan.font.size:= 30;

111 mpan.caption:= 'File Encrypted!' ;

112 Screen.Cursor:= crDefault;

113 Stop;

114 clstBox.Items.Add('Time consuming: ' +GetValueStr + ' of: ' +

115 inttoStr(getFileSize(selectFile))+ ' File Size');

116 Free;

117 end;

And that’s how to get a feeling of the speed of AES with a protocol extract:

Use native. AES-256 cipher and native. CBC chaining mode.

Ciphertext size = 21726 bytes.

Decryption succeeded. 21726 bytes processed.

Speed of decryption was 1326 KiB per second. //4 GByte about 40 Minutes

����To understand threads one must think of several programs running at once. Imagine further that all
these programs have access to the same set of global variables and function calls.

Each of these programs would represent a thread of execution and is thus called a thread. The
important differentiation is that each thread does not have to wait for any other thread to proceed. If
they have to wait we must use a synchronize mechanism.

All the threads proceed simultaneously.
To use a metaphor, they are like runners in a race, no runner waits for another runner. They all
proceed at their own rate.

www.softwareschule.ch 9

����Because Synchronize uses a form message loop, it does not work in console applications. For
console applications use other mechanisms, such as a mutex (see graph below) or critical sections, to
protect access to RTL or VCL objects.

2: 3 Threads at work with Log

The point is you can combine asynchronous calls with threads! For example asynchronous data
fetches or command execution does not block a current thread of execution.
But then your function or object has to be thread safe. So what’s thread-safe. Because multiple clients
can access for example your remote data module simultaneously, you must guard your instance data
(properties, contained objects, and so on) as well as global variables.

Tasks for advanced studies:

� How can you crack a password with a massive parallel concept? Study all about a salt. A
512-bit salt is used by password derived keys, which means there are 2^512 keys for
each password. So a same password doesn’t generate always a same key. This
significantly decreases vulnerability to 'off-line' dictionary' attacks (pre-computing all keys
for a dictionary is very difficult when a salt is used). The derived key is returned as a hex
or base64 encoded string. The salt must be a string that uses the same encoding.

We also use a lot of more multi scripts to teach and the wish to enhance it with a thread, simply take a
look in the meantime at 141_thread.txt, 210_public_private_cryptosystem.txt and
138_sorting_swap_search2.txt. At least let’s say a few words about massive threads and
parallel programming and what functions they perform.

Do not create too many threads in your apps. The overhead in managing multiple threads can impact
performance. The recommended limit is 16 threads per process on single processor systems. This
limit assumes that most of those threads are waiting for external events. If all threads are active, you
will want to use fewer.

����You can create multiple instances of the same thread type to execute parallel code. For example,
you can launch a new instance of a thread in response to some user action, allowing each thread to
perform the expected response.

www.softwareschule.ch 10

4: A real Thread with a synchronisation object

���� ����One note about async execution with fork on Linux with libc-commands; there will be better
solutions (execute and wait and so on) and we still work on it, so I'm curious about comments,
therefore my aim is to publish improvements in a basic framework on sourceforge.net depends on
your feedback ;)

�	Try to find out more about symmetric/asymmetric encryption systems and the probability to
crack it in a serial way. Due to their large computational requirements, a asymmetric key system is
used in practice only for encrypting so called "session keys". The pay load is encrypted with a
symmetric algorithm using the session key. This combination of two methods is called hybrid
encryption (asymmetric/symmetric). This implies no security deficit if you use a good random number
generator for the session key, like a HW generator below!

�Try to change the sound file in order to compare two sounds at the same time:

04 pchar(ExePath+ 'examples\maxbox.wav '));

�Try to find out more about the HW schema above and the following question: does it works in a
synchronous or asynchronous mode?

�Check the source of LockBox to find out how a thread is used:

05 E:\maxbox\maxbox3\source\TPLockBoxrun\ciphers\ uTPLb_AES.pas;

www.softwareschule.ch 11

�Try to change the form message with a string literal const and a modal form:

21 with inFrm do begin

22 position:= poScreenCenter;

23 color:= clred;

24 caption:= 'Delphi in a Box ';

25 show;

26 end;

�Next starter will be the number 16 with the topic code reviews.

max@kleiner.com

Links of maXbox, TSerial and Asynchronous Threads of DelphiWebStart:

059_timerobject_starter2_ibz2_async.txt

http://sourceforge.net/projects/delphiwebstart

http://www.commfront.com/RS232_Protocol_Analyzer_Monitor/RS232_Analyzer_Monitor_Tester_TUTORIAL3.HTM

http://toolbox.reworld.eu

http://www.softwareschule.ch/maxbox.htm
http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

My Own Experience:
http://www.softwareschule.ch/download/armasuisse_components.pdf

SHA1 Hash of maXbox 3.8.5 Win: CDDA808D3B29B0D517CF E6AF2B68AF0A6D6B35D1

