

maXbox Starter 4
Start with Modular Programming II

1.1 Timer Step
Today we spend some more time (with a timer object) in programming with modules, units and UML.
Hope you did already work with the Starter 1, 2 and 3 or 5 till 10 at:

http://sourceforge.net/apps/mediawiki/maxbox/

http://sourceforge.net/projects/maxbox/files/Tutorials/

http://www.softwareschule.ch/download/maxbox_starter.pdf

In starter 2 was a first introduction to object programming with a timer. This lesson will introduce you to
code files and form files in a separate way and shows the representation with UML. So what’s modular
programming and UML1?
UML is said to address the modelling of manual, as well as computerised, parts of systems, and to be
capable of describing current systems, as well as specifying new systems. UML (unified modelling
language) is intended to be an analysis and design language, not a full software methodology. It
specifies notations and diagrams, but makes no suggestions regarding how these should be used in
the software development process (1.4 Appendix).
Modular programming is subdividing your program into separate subprograms such as functions and
procedures. It’s more of this.
A modular application, in contrast to one monolithic chunk of tightly coupled code in which every unit
may interface directly with any other, is composed of smaller, separated chunks of code or own units
that are well isolated.
Those chunks can then be developed by separate teams with their own life cycles and their own
schedules. The results can then be assembled together by a separate entity—the linker.
In maXbox a module represents an include file or a unit file.

The ability to use external libraries and compose applications out of them results in an ability to create
more complex software with less time and work. The trade-off is the need to manage those libraries
and ensure their compatibility. That is not a simple task. But there is no other practical, cost-efficient
way to assemble systems of today's complexity.

1.2 Get the Code
As you already know the tool is split up into the toolbar across the top, the editor or code part in the
centre and the output window at the bottom.

���� In maXbox you can’t edit a visual form directly on top of it, you program the form in a separate file.

Before this starter code will work you will need to download maXbox from the website. It can be down-
loaded from http://www.softwareschule.ch/maxbox.htm (you’ll find the download maxbox3.zip top left
on the site). Once the download has finished, unzip the file, making sure that you preserve the folder

1 Very short introduction

 2

structure as it is. If you double-click maxbox3.exe for the first time the box opens a default program.
Test it with F9 or press Compile and you should hear a sound. So far so good now we’ll open our two
examples in the examples directory.

59_timerobject_starter2_uml_main.txt
59_timerobject_starter2_uml_form.inc

If you can’t find the two files try also the zip-file loaded from:
http://www.softwareschule.ch/download/maxbox_examples.zip

(This tutorial is based on V3.0) You can open two times maXbox and work with the two files each. On
the menu /Output you find New Instance. The Load button will present you in /examples with a list of
programs stored within your directory as well as a list of /exercises with predefined Pascal code to
be fixed or ported for training purposes.
Use the Save Page as… function of your browser2 and load it from examples (or wherever you
stored it). Now let’s take a look at the code of this project. Our first line is

1: program TimerEvent_Object_UML;

We have to name the game, means the program’s name is TimerEvent_Object_UML;.

���� This example requires a lot of predefined classes from the visual component library (VCL) of
Delphi: TForm, TButton, TLabel and TImage, also non visual components like TTimer and a
TStringlist ;
We can say that a predefined Class with a well behaved and public interface are components.
The program makes a series of calls to an event handler on the form, which is triggered (invoked) from
the onClick event of a button.

110: okBtn.onClick:= @startStopClick;

Most of the functions we use in the script like Time() are implicit in a library (or unit). A library is a
collection of code, which you can include in your program. By storing your commonly used code in a
library or a component, you can reuse code for many times in different projects and also hide difficult
sections of code from the developer; another advantage of modular programming. Once a unit is
tested it’s stable to use.

2 Or copy & paste

 3

1: The modular Clock

Next we learn how a compiler directive works. Compiler directives are special-syntax comments we
can use to control the features of a compiler. A compiler directive is an instruction to the compiler to
complete a task before formally starting to compile the program, thus they are sometimes called pre-
processor directives.
Among other items, during the pre-processor step the compiler is looking for compiler directives or
macros and processes them as they are encountered.
After completing the tasks as directed, the compiler proceeds to its second step where it checks for
syntax errors (violations of the rules of the language) and converts the source code into an object code
that contains machine language instructions, a data area, and a list of items to be resolved when he
object file is linked to other object files.
Directives can’t be changed3 while a program runs. A section starts with the symbol {$*:

06: {$I ..\maxbox3\examples\59_timerobject_starter2 _uml_form.inc}

The $Include compiler directive includes code sections from an external file in line into the current Unit
or Program.
Therefore the
59_timerobject_starter2_uml_main.txt includes the
59_timerobject_starter2_uml_form.inc which has by convention an *.inc extension. This file
represents the form of picture 1 above.

This is very useful for including compiler directives or common code into all of your units to ensure
consistency, and a single point of control. You can define the start point of the include directive straight
in your source code.
This directive can then be used multiple times within your code and allows code in an include file to be
incorporated into a Unit or Program.

���� Include Files are often called "Header Files" because the include directive is normally inserted
toward the top of the file (at the head) as one of the first items.

� So far we have learned something about modules and include directives and the difference
between a pre-processor and a compiler. Now it’s time to run your program at first with F9 (if
you haven’t done yet). The program displays the time you can start or stop like a stopwatch.
You can see the time difference at the bottom of the box (Image 2)

A Timer was an early computer program that "shows" the time up from the system clock. It served as a
timer with some configurations you met in starter2. It has since then been implemented on nearly
every computer platform in existence.

2: The Output Window

The Compile button is also used to check that your code is correct, by verifying the syntax before the
program starts. Another way to check the syntax before run is F2 or the Syntax Check in the menu
Program. When you run this code you will see the content of the external include file
(59_timerobject_starter2_uml_form.inc) first on the screen and then starts the main
program with the time display on the form and buttons on it.
To stop this you can switch to the menu Options and deactivate the ..Options/Sho w Include
check mark �. With escape or OK you close the include content form and the app starts. Let’s have a
look at the form file now:

3 You can only change before

 4

06: const EDITBASE = 170;

07: BTNLINE = 400;

08:

09: var okBtn, closeBtn: TButton;

10: timelbl: TLabel;

����The Objects are dynamically allocated blocks of memory whose structure is determined by their
class type. Each object has a unique copy of every field defined in the class, but all instances of a
class share the same methods.
For example: okBtn, closeBtn are 2 objects of the class TButton !
Objects are created and destroyed by special methods called constructors and destructors.
The constructor is:

 okBtn:= TButton.create(frm);
 closeBtn:= TButton.create(frm);

The destructor or the close event of the main form (just a Free method) is:

23 procedure closeFormClick(Sender: TObject; var Action: TCloseAction);

24 begin

25 if myTimer <> NIL then begin

26 myTimer.enabled:= false;

27 myTimer.Free;

28 myTimer:= NIL;

29 end;

30 timeFrm.Free;

31 timeFrm:= NIL;

32 end;

���� Free (Destroy) deactivates the form or timer object by setting the instance to False before freeing
the resources required by the form. The free and nil procedure free up the memory used by an object,
and sets the object reference to nil.

We do have another close method with an event handler, cause the user can close the form by
pressing the button or click with the mouse on top right the close mark � or by hit <Alt F4> and we
have to handle all this events, otherwise the timer goes crazy!

18 procedure CloseButtonClick(Sender: TObject);

19 begin

20 timeFrm.Close;

21 end;

To write the event handler code to close the child window delegates from the close button to the
closeFormClick event with timeFrm .Close .
Let’s say something about the free method in line 30. It's a standard method for destroying objects so
it won't do anything bad to your application. Action:= caFree; is more used when you don't store
the form's object anywhere in the caller and you can't free it otherwise - so you leave the form to
destroy itself. Without Free (check it with the task manager) your app don’t frees the memory!

� Try to change now the object name (instance) of the okBtn, and how many time you have to
rename the object and how many error messages you get?

 5

1.3 The Main Routine (Timer)
An OP program must have a main routine between begin and end. The main routine is run once and
once only at the start of the program (after you compiled) and is where you will do the general instruct-
ions and the main control of the program.

097 //main program

098 begin

099 glob_count:= 0;

100 start_b:= true;

101 ShowMessage('Press OK to start at: '+dateToStr (date)+': '+timeToStr(time))

102 myTimer:= TTimer.Create(self);

103 myTimer.Interval:= MILLISECONDS;

104 myTimer.onTimer:= @timer1Event;

105-108 �

109 timeFrm:= loadTimerForm;

110 timeFrm.onClose:= @closeFormClick;

111 okBtn.onClick:= @startStopClick;

112 closeBtn.onClick:= @closeButtonClick;

113 End.

In Line 109 we create the form with the function loadTimerForm and we get an object back to
control it namely the timeFrm . In the next lines the button click and form click are known as an event
handler because it responds to events that occur while the program is running. Event handlers are
assigned to specific events (like onClick()) by the form files, in our example on line 34:

procedure startStopClick(Sender: TObject); //event handler

begin
// toogle the clock

 if start_b then begin

 //code to handle the sender event (signal-slot) i n QT

end;

� How can you alter the situation that the background colour of the form changes every second
(minute) an event from the timer occurs? Yes, you can change the form colour but in which event!?
Hint: try it with the procedure Random(clblue).

� So we build a windows "Hello Time" application which demonstrates the essential steps for
creating such an application. The application uses windows widgets like a form, a few controls like
buttons, label and a bitmap, some events, and will display in the end a time dialog in response to a
user action.

In the maXbox you do have (see next picture) in Debug menu the Component Count , but you have
to scroll down to find the components from the live form in a history list:

cid: 813 MaxForm1.#150: TTimer
cid: 814 MaxForm1.#151: TForm
cid: 815 MaxForm1.#0: TLabel
cid: 816 MaxForm1.#1: TButton
cid: 817 MaxForm1.#2: TButton
cid: 818 MaxForm1.#3: TImage

 6

All to Debug

I would say that even OOP is tougher to learn and much harder to master than procedural coding, you
learn it better after procedural thinking. But after you get in touch with OOP the modular programming
is the next and for a long times your last step.
Some notes at last about event-driven. Event-driven programming is best-suited for a program that
does not have control over when input may come, such as in a typical GUI or from program. A user
can click on any button on a form at any time!

3: The Clock Code in the Box

Feedback @

max@kleiner.com

Literature:
Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maXbox:

http://www.softwareschule.ch/maxbox.htm

http://sourceforge.net/projects/maxbox

 7

1.4 UML Appendix from UseCase to Deployment

1.4.1 UseCase - Analysis
Use-case diagrams, which model the functional requi rements of the system in
terms of actors and actions (e.g., owner gives cheq ue for cashing to
counter clerk). Producing an application consists o f implementing all the
use-cases with corresponding activities.

4: Timer Use Case

1.4.2 Activity - Analysis
Activity diagrams are graphical representations of workflows of stepwise
activities and actions with support for choice, ite ration and concurrency.

 8

1.4.3 Class Diagram - Design
A class diagram in the UML is a type of static stru cture diagram that
describes the structure of a system by showing the system's classes, their
attributes, and the relationships between the class es.

1.4.4 State Event - Design
This diagram is used to show the states that an obj ect can occupy, together
with the actions which will cause transitions betwe en those states.

 9

1.4.5 Sequence - Implementation
Sequence diagrams show how objects interact through time, by displaying
operations against a vertical timeline!

1.4.6 Package - Implementation
A package diagram in the Unified Modelling Language depicts the
dependencies between the packages that make up a mo del.

Package diagrams can use packages that represent th e different layers of a
software system to illustrate the layered architect ure of a software
system. The dependencies between these packages can be adorned with labels
/ stereotypes to indicate the communication mechani sm between the layers.

Those are the namespaces or units in a modular prog ramming.

Ex.: [TypeConverter(typeof(Sample.Controls.Design.T Converter))]

Namespace is: /Sample.Controls.Design.TConverter

 10

 11

1.4.7 Component - Integration
Components are used to describe parts of a system a t a high level, such as
‘time generator’. These will have internal structur e, and will allow you to
see a detailed view of its structure.

1.4.8 Deployment - Integration
Deployment diagrams are used to show how the model relates to hardware and,
in a multiprocessor design, how processes are alloc ated to processors.

http://www.softwareschule.ch/download/patternposter .pdf

http://max.kleiner.com/uml2.htm

