

maXbox Starter 22
Start with Services

1.1 From DLL to COM
COM clients are applications that make use of a COM object or service implemented by another
application or library. The most common types are applications that control an Automation server
(Automation controllers) and applications that host an ActiveX control (ActiveX containers).
Each service is an interface that presents a set of related functions. The implementation of the
interface is hidden within the object.

As you will see a service and other interfaces fall into two basic categories. Hope you did already
read Starters 1 till 21 at:

http://sourceforge.net/apps/mediawiki/maxbox/

In this lesson we deal with OleObjects and his creator.
CreateOleObject creates a single uninitialized object of the class specified by the ClassName
parameter. ClassName specifies the string representation of the Class ID (CLSID).
CreateOleObject is used to create an object of a specified type when the CLSID is known and
when the object is on a local or in-proc server. Only the objects that are not part of an aggregate
are created using CreateOleObject .
In a late binding system like that, a type is unknown till runtime. So we use a general type or
intrinsic type called variant. What’s a Variant?
A Variant type is capable of representing values that change type dynamically. Whereas a
variable of any other type is statically bound to that type, a variable of Variant type can assume
values of differing types at run-time.

����The Variant type is most commonly used in situations where the actual type to be operated
upon varies or is unknown at compile-time.
While variants offer great flexibility, they also consume more memory than regular variables, and
operations on variants are substantially slower than operations on statically typed values.

����An advantage of using Variants is that you do not need to import the type library, because
Variants use only the standard IDispatch methods to call the server. The trade-off is that
Variants are slower, because they use dynamic binding at runtime.

In this tutorial we show 3 steps to build a service:

• First building block is the use of the unit code in the script.
• Second we wrap the unit code to built a class unit of the shell code.
• Third we set two service procedures (compress and decompress) to call the class

methods of the unit, it’s very powerful, but tough to built.

2

When I start a service through another one small UI like a button the service has started
successfully and it is running in the machine. It is running even I restart the machine also. But the
code (Start method of Compress) is executed and takes some time, depending on the size of the
archive, so a thread or more runs in the background.
This will perform compress operation (read and write data) and if records are found then it will
Pause the current thread (i.e. Main/Parent thread) and start MultiThreading1 to perform some
copy operation, like the following screen-shot figure out.

1: Compress runs

Let’s jump to history and the beginning of OLE with DDE. Dynamic Data Exchange was first
introduced in 1987 with the release of Windows 2.0 as a method of interprocess communication
so that one program can communicate with or control another program, somewhat like Sun's
RPC (Remote Procedure Call).

����In Delphi code, CreateOleObject is called once to create each new single instance of a
class. To create multiple instances of the same class, we recommend that you use a class factory
for example:

 says TComponentFactory.Create(...) with

TPacketInterceptFactory.Create(...).

This process is handled indirectly, through a special object called a class factory (based on
interfaces) that creates instances of objects on demand.

When a client requests a service from a COM object, the client passes a class identifier (CLSID)
to COM. A CLSID is simply a GUID that identifies a COM object. COM uses this CLSID, which is
registered in the system registry, to locate the appropriate server implementation. Once the
server is located, COM brings the code into memory, and has the server create an object
instance for the client.

1 You can pause/stop the Main Thread and start again, once MultiThreading task gets completed.

3

1.2 Compress and Decompress
As you already know the tool is split up into the toolbar across the top, the editor or code part in
the centre and the output window at the bottom or the interface part on the right. Change that in
the menu /View at our own style.

���� In maXbox you will execute the Compress as a script, libraries and units are already built.

����Before this starter code will work you will need to download maXbox from the website. It can
be down-loaded from http://www.softwareschule.ch/maxbox.htm (you’ll find the download
maxbox3.zip on the top left of the page). Once the download has finished, unzip the file, making
sure that you preserve the folder structure as it is. If you double-click maxbox3.exe the box
opens a default demo program. Test it with F9 / F2 or press Compile and you should hear a
sound. So far so good now we’ll open the example:

363_compress_services2.txt

File size: 15572
If you can’t find the two files try also the zip-file (15572 bytes) loaded from:
http://www.softwareschule.ch/examples/363_compress_services2.txt

Now let’s take a look at the code of this fist part project. Our first line is

01 program CompressServices2;

We name it, means the program’s name is above.

���� This example requires two objects from the classes: TShellZip and TMemoryStream of
mX4 so the second one is from the well known VCL Lib .

Let’s do a first Compress now. We want to check if our service is valid on your operating system.
We use straight forward the function in the box:

201 Compress(exepath+ 'examples\earthplay2' ,

exepath+ 'examples\maxboxziptest2.zip');

Those are useful global procedures:

8488: Procedure Compress(azipfolder, azipfile: stri ng)');
8489: Procedure DeCompress(azipfolder, azipfile: st ring)');

It is valid if a string azipfolder matches what the file system expects.

��������If its not find a valid folder or file to compress it says:

>>> Variant is null, cannot invoke.

So the magic behind is the wrapped object:

160 procedure XCompress(azipfolder, azipfile: string);

161 begin

162 with TShellZip.create do begin

163 zipfile:= azipfile;

164 ZipFolder(azipfolder);

165 Free;

4

166 end;

167 //compress

168 end;

There are 3 main operators that use this object of the service routine XCompress:

1. Constructor (creates the object TShellZip which returns a reference.
2. Property: zipfile, which sets the filename for another zipfile within a string
3. Method: ZipFolder(), which passes the folder to compress.

But what happens behind the method ZipFolder ?

We call or invoke a shell object! Another way to use dispatch interfaces is to assign the

122 shellobj := CreateOleObject('Shell.Application');

to a Variant. By assigning the interface returned by CreateOleObject to a Variant, you can take
advantage of the Variant type's built-in support for interfaces. Simply call the methods of the
interface, and the Variant automatically handles all IDispatch calls, fetching the dispatch ID and
invoking the appropriate method.

V: Variant; //schema

begin

V:= CreateOleObject("TheServerObject");

V.MethodName; { calls the specified method }

As you already know an advantage of using Variants is that you do not need to import the type
library, because Variants use only the standard IDispatch methods to call the server. The trade-
off is that Variants are slower, because they use dynamic binding at runtime.

69 Try

70 Result:= shellObj.NameSpace(ax);

71 Except

The Windows Shell provides a powerful set of automation objects that enable you to program

the Shell with maXbox and scripting languages such as PascalScript or JScript (compatible with
ECMA 262 language specification. You can use these objects to access many of the Shell's
features and dialog boxes. For example, you can access the file system, launch programs,
compress or decompress like in our case and change system settings.

����You can also instantiate many of the Shell objects with late binding, as we do. You can call
this also scriptable Shell objects with late binding.

Many of the Shell objects became available in version 4.71 of the Shell. Others are available in
version 5.00 and later. Version 5.00 became available with Win2000. The following table lists
each Shell object under the version of the Shell in which the object became available.

Version 4.71 Version 5.00

Folder DIDiskQuotaUser

FolderItemVerb DiskQuotaControl

FolderItemVerbs Folder2

5

Shell FolderItem

ShellFolderView FolderItems

ShellUIHelper FolderItems2

ShellWindows IShellDispatch2

WebViewFolderContents IShellLinkDual2

 ShellFolderItem

 ShellLinkObject

The Shell object represents the objects in the Shell. You can use the methods exposed by the
Shell object to:

• Open, explore, and browse for folders.
• Minimize, restore, cascade, or tile open windows.
• Launch Control Panel applications.
• Display system dialog boxes.

Users are perhaps most familiar with the commands they access from the Start menu and the
taskbar's shortcut menu. The taskbar's shortcut menu appears when users right-click the taskbar.
The following HTML Application (HTA) produces a start page with buttons that implement many
of the Shell object's methods. Some of these methods implement features on the Start menu and
the taskbar's shortcut menu.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb776890%28v=vs.85%29.aspx

Next a few examples to see the use of OleObject:

{The following code shows an example of how to crea te an Ole Object and how
to perform specific operations.}
http://docs.embarcadero.com/products/rad_studio/del phiAndcpp2009/HelpUpdate2/EN/htm
l/delphivclwin32/ComObj_CreateOleObject.html

procedure TForm1.ButtonClick(Sender: TObject);
var
 WordApp, NewDoc: Variant ;
begin
 { Creates a Microsoft Word application. }
 WordApp := CreateOleObject('Word.Application');
 { Creates a new Microsoft Word document. }
 NewDoc := WordApp.Documents.Add;
 { Inserts the text 'Hello World!' in the document. }
 WordApp.Selection.TypeText('Hello World!');
 { Saves the document on the disk. }
 NewDoc.SaveAs('my_new_document.doc');
 { Closes Microsoft Word. }
 WordApp.Quit;
 { Releases the interface by assigning the Unassigne d constant to the
Variant variables. }
 NewDoc := Unassigned;
 WordApp := Unassigned;
end;

� � � � As shown in the example, you can release the interface stored in the returned Variant by
assigning the Unassigned constant to that Variant.
As shown in the example, if the interface returned by CreateOleObject is assigned to a Variant,
you can release the interface by assigning the Unassigned constant to that Variant.

6

You can also use the OBJECT element to instantiate Shell objects on an HTML page. To do this,
set the OBJECT element's ID attribute to the variable name you will use in your scripts, and
identify the object using its registered number (CLASSID).

Now comes the fun part of our compressed file or folder, this is how it looks like to set the HEX as
ASCII Wingdings:

������ �	
��
� �	� �⌧�������� �	
��
� �	� �⌧�������� �	
��
� �	� �⌧�������� �	
��
� �	� �⌧������

� �	�
�������� ������
� �	�
�������� ������
� �	�
�������� ������
� �	�
�������� ������
�� �� ���������������
��� �� ���������������
��� �� ���������������
��� �� ���������������
�
 ���
 ��� �
 � !��
���� � ���
 ��� �
 � !��
���� � ���
 ��� �
 � !��
���� � ���
 ��� �
 � !��
���� �

� ��� ������� �	�
����
� ��� ������� �	�
����
� ��� ������� �	�
����
� ��� ������� �	�
����
���� �� ���
 �
� �	� "������ �� ���
 �
� �	� "������ �� ���
 �
� �	� "������ �� ���
 �
� �	� "��
��
 ��� �
������ �
 �	�� !��
 ��� �
������ �
 �	�� !��
 ��� �
������ �
 �	�� !��
 ��� �
������ �
 �	�� !
��
���# ��
���# ��
���# ��
���#

Wingdings are a series of dingbat fonts which render letters as a variety of symbols. They were
originally developed in 1990 by Microsoft by combining glyphs from Lucida Icons, Arrows, and
Stars licensed from Charles Bigelow and Kris Holmes.

2: Decompress step by step in compare

Clients are seen in picture 2 as the two classes do the tasks. After creating the shell object we set
the options or filter of the folder.

7

These are the most important options you can specify:
The Folder object represents a Shell folder. You can use the methods exposed by the Folder
object to:

• Get information about a folder.
• Create subfolders.
• Copy and move file objects into the folder.

The FolderItem object represents an item in a Shell folder. Its properties enable you to retrieve
information about the item. You can use the methods exposed by this object to run an item's
verbs, or to retrieve information about an item's FolderItemVerbs object.
There are plenty more shell script expression tricks and operations, which can be found in
Programming, or, for example a really simple one at the end:

$ How can we show the run dialog?

procedure TForm1_FormCreateShowRunDialog;

var

 ShellApplication: Variant;

begin

 ShellApplication:= CreateOleObject('Shell.Application');

 ShellApplication.FileRun;

end;

Conclusion: CreateOleObject returns a reference to the interface that can be used to
communicate with the object. For CreateOleObject this interface is of type IDispatch . To
create a COM object that does not support an IDispatch interface, use CreateComObject .

$ Time of the day: Study more about the theory of Data Compression:

http://www.data-compression.com/theory.shtml

8

Claude E. Shannon formulated the theory of data compression. Shannon established that there is
a fundamental limit to lossless data compression. This limit, called the entropy rate, is denoted by
H. For example:
The implicit unpredictability or randomness of a probability p can be measured by the extent to
which it is possible to compress data like a tar or zip archive:

much compressible -> less random -> more predictabl e

This is the entropy, a measure of how much randomness (unpredictable) it contains.
To explain entropy with a coin goes like this: E.g. a fair coin has two outcomes, each with a
probability of 1/2 so the entropy is

1/2 log 2 + 1/2 log 2 = 1

PrintF('max. Entropy of coin 0.5p: %f',[0.5*log2(2) +0.5*log2(2)]);

> max. Entropy of coin 0.5p: 1.00

Feedback @
max@kleiner.com

Literature:
Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maXbox and Data Compression:

http://www.softwareschule.ch/maxbox.htm

http://msdn.microsoft.com/en-us/library/windows/desktop/bb776890%28v=vs.85%29.aspx

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

http://sourceforge.net/projects/delphiwebstart

9

1.3 Appendix

EXAMPLE: ProgID of Shell Objects

The ProgID for each of the Shell objects is shown in the following table.

Object ProgID
DIDiskQuotaUser Microsoft.DiskQuota.1

DiskQuotaControl Cannot late bind

Folder shell.Shell_Application.NameSpace("...")

Folder2 shell.Shell_Application.NameSpace("...")

FolderItem
shell.Shell_Application.NameSpace("...").Self or
Folder.Items.Item or Folder.ParseName

FolderItems Folder.Items

FolderItems2 Folder.Items

FolderItemVerb Shell.NameSpace("...").Self.Verbs.Item()

FolderItemVerbs FolderItem.Verbs or Shell.NameSpace("...").Self.Verbs

IShellDispatch2 shell.Shell_Application

IShellLinkDual2
Shell.NameSpace("...").Self.GetLink or
Shell.NameSpace("...").Items().GetLink

Shell shell.Shell_Application

ShellFolderItem Shell.NameSpace("...").Self or Shell.NameSpace("...").Items()

ShellFolderView Cannot late bind

ShellFolderViewOC Cannot late bind

ShellLinkObject
Shell.NameSpace("...").Self.GetLink or
Shell.NameSpace("...").Items().GetLink

ShellUIHelper Cannot late bind

ShellWindows shell.Shell_Windows or ShellWindows._NewEnum

WebViewFolderContents Cannot late bind

