

maXbox Starter 20
Start with Regular Expressions

1.1 From TRex to RegEx
Regular expressions are the main way many tools matches’ patterns within strings. For example,
finding pieces of text within a larger document, or finding a restriction site within a larger
sequence. This tutorial illustrates what a RegEx is and what you can do to find, match, compare
or replace text of documents or code.
As you will see Regular expressions are composed of characters, character classes,
metacharacters, quantifiers, and assertions. Hope you did already read Starters 1 till 19 at:

http://sourceforge.net/apps/mediawiki/maxbox/

What’s a Regular Expression?
A regular expression (RegEx): describes a search pattern of text typically made up from special
characters called metacharacters:

• You can test whether a string matches the expression pattern
• You can use a RegEx to search/replace characters in a string
• It’s very powerful, but tough to read

Regular expressions occur in many places and masks, not alone in code or languages
environments:
Text editors, shells or search tools like Grep1 allow also RegEx in search/replace functions, like
the following screen-shot figure out.

1: Find with RegEx

Let’s jump to history and the beginning of RegEx with Perl. Perl was a horribly flawed and very
useful scripting language, based on UNIX shell scripting and C, that helped lead to many other

1 Global Regular Expression Print / Parser

2

better languages. Perl was and is also excellent for string/file/text processing because it built
regular expressions directly into the language as a first-class data type.

����Many command-line shell Linux/Mac tools (ed, vi, grep, egrep, sed, awk) support Regular
Expressions, for e.g. Grep:

 grep -e "[pP]hone.*206[0-9]{7}" contacts.txt

>> phone { 206-685-2181}

Grep is a tool that originated from the UNIX world during the 1970's. It can search through files
and folders (directories in UNIX) and check which lines in those files match a given regular
expression. Grep will output the filenames and the line numbers or the actual lines that matched
the regular expression.

1.2 RegEx out of the Box
As you already know the tool is split up into the toolbar across the top, the editor or code part in
the centre and the output window at the bottom or the interface part on the right. Change that in
the menu /View at our own style.

���� In maXbox you will execute the RegEx as a script, libraries and units are already built.

����Before this starter code will work you will need to download maXbox from the website. It can
be down-loaded from http://www.softwareschule.ch/maxbox.htm (you’ll find the download
maxbox3.zip on the top left of the page). Once the download has finished, unzip the file, making
sure that you preserve the folder structure as it is. If you double-click maxbox3.exe the box
opens a default demo program. Test it with F9 / F2 or press Compile and you should hear a
sound. So far so good now we’ll open the example:

309_regex_powertester2.txt

If you can’t find the two files try also the zip-file (48100 bytes) loaded from:
http://www.softwareschule.ch/examples/309_regex_powertester2.txt

Now let’s take a look at the code of this fist part project. Our first line is

01 program RegEx_Power_Tester_TRex;

We name it, means the program’s name is above.

���� This example requires two objects from the classes: TRegExpr and TPerlRegEx of
PerlRegEx so the second one is from the well known PCRE Lib .
TPerlRegEx is a Delphi VCL wrapper around the open source PCRE library, which implements
Perl-Compatible Regular Expressions.
This version of TPerlRegEx is compatible with the TPerlRegEx class (PCRE 7.9) in the
RegularExpressionsCore unit in Delphi XE. In fact, the unit in Delphi XE and maXbox3 is
derived from the version of TPerlRegEx that we are using now.
Let’s do a first RegEx now. We want to check if a name is a valid Pascal name like a syntax
checker does. We use straight forward a function in the box:

732 if ExecRegExpr('^[a-zA-Z_][a-zA-Z0-9_].*','pascal_nam e_kon')

 then writeln('pascal name valid') else writeln('pascal name invalid');

This is a useful global function:

function ExecRegExpr (const ARegExpr, AInputStr: st ring): boolean;

3

It is true if a string AInputString matches regular expression ARegExpr and it will raise an
exception if syntax errors in ARegExpr are done.

Now let’s analyse our first RegEx step by step '^[a-zA-Z_][a-zA-Z0-9_].*' :

^ matches the beginning of a line; $ the end
[a-z] matches all twenty six small characters fr om 'a' to 'z'
[a-zA-Z_] matches any letter with underscore
[a-zA-Z0-9_] matches any letter or digit with under score
. * (a dot) matches any character except \n
. * * means 0 or more occurrences
[] group characters into a character set;

A lot of rules for the beginning, and they look ugly for novices, but really they are very simple
(well, usually simple ;)), handy and powerful tool too. You can validate e-mail addresses; extract
phone numbers or ZIP codes from web-pages or documents, search for complex patterns in log
files and all you can imagine! Rules (templates) can be changed without your program
recompilation! This can be especially useful for user input validation in DBMS and web projects.
Try the next one:

if ExecRegExpr('M[ae][iy]e?r.*[be]', 'Mairhuberu')

 then writeln('regex maierhuber true') else writeln('regex maierhuber false');

? Means 0 or 1 occurrences

Any item of a regular expression may be followed by another type of metacharacters – called
iterators. Using this characters you can specify number of occurrences of previous characters so
inside [] , most modifier keys act as normal characters:

/what[.!*?]*/ matches "what", "what.", "what!", "wh at?**!", ..

So a character class is a way of matching 1 character in the string being searched to any of a
number of characters in the search pattern.
Character classes are defined using square brackets. Thus [135] matches any of 1, 3, or 5. A
range of characters (based on ASCII order) can be used in a character class: [0-7] matches any
digit between 0 and 7, and [a-z] matches and small (but not capital) letter.

��������Note that the hyphen is being used as a metacharacter here. To match a literal hyphen in a
character class, it needs to be the first character. So [-135] matches any of -, 1, 3, or 5. [-0-9]
matches any digit or the hyphen.

What if we want to define a certain place? An assertion is a statement about the position of the
match pattern within a string. The most common assertions are “^”, which signifies the beginning
of a string, and “$”, which signifies the end of the string.

For example search all empty or blank lines: Search empty lines: ‘^$’

This is how we can assert a valid port number with ^ and $:

745 if ExecRegExpr('^(:\d\d?\d?\d?\d?)$',':80009')

 then writeln('regex port true') else writeln('regex port false');

There are 3 main operators that use regular expressions:

1. Matching (which returns TRUE if a match is found and FALSE if no match is found.
2. Substitution, which substitutes one pattern of characters for another within a string
3. Split, which separates a string into a series of substrings

4

If you want to match a certain number of repeats of a group of characters, you can group the
characters within parentheses. For example, /(cat){3}/ matches 3 reps of “cat” in a row:
“catcatcat”. However, /cat{3}/ matches “ca” followed by 3 t’s: “cattt”.
And things go on. To negate or reject a character class, that is, to match any character EXCEPT
what is in the class, use the caret ^ as the first symbol in the class. [^0-9] matches any
character that isn’t a digit. [^-0-9] ,matches any character that isn’t a hyphen or a digit.
Now its time to reflect:

RE Metacharacter Matches…

^ beginning of line

$ end of line

\char Escape the meaning of char following it

[^] One character not in the set

\< Beginning of word anchor

\> End of word anchor

() or \(\) Tags matched characters to be used later (max = 9)

| or \| Or grouping

x\{m\} Repetition of character x, m times (x,m = integer)

x\{m,\} Repetition of character x, at least m times

x\{m,n\} Repetition of character x between m and m times

2. Overview of Matches

You can specify a series of alternatives for a pattern using "|'' to separate them, so that fee|fie|foe
will match any of "fee'', "fie'', or "foe'' in the target string (as would f(e|i|o)e). The first alternative
includes everything from the last pattern delimiter ("('', "['' , or the beginning of the pattern)
up to the first "|'', and the last alternative contains everything from the last "|'' to the next pattern
delimiter.
For this reason, it's common practice to include alternatives in parentheses, to minimize
confusion about where they start and end.

Next a few examples to see the atoms:

 rex:= '(no)+.*' ; //Print all lines containing one or more consec utive

occurrences of the pattern “no”.

 rex:= '.*S(h|u).*' ; //Print all lines containing the uppercase lette r “S”,

followed by either “h” or “u”.

 rex:= '.*\.[^0][^0].*' ; //Print all lines ending with a period and exactl y two

non-zero numbers.

5

 rex:= '.*[0-9]{6}\..*' ; //all lines at least 6 consecutive numbers follow by a

period.

Next we want to see how the objects in the box work:
The static versions of the methods are provided for convenience, and should only be used for one
off matches, if you are matching in a loop or repeating the same search often then you should
create an 'instance' of the TRegEx record and use the non static methods.

The RegEx unit defines TRegEx and TMatch as records. That way you don’t have to explicitly
create and destroy them. Internally, TRegEx uses TPerlRegEx to do the heavy lifting.
TPerlRegEx is a class that needs to be created and destroyed like any other class. If you look at
the TRegEx source code, you’ll notice that it uses an interface to destroy the TPerlRegEx
instance when TRegEx goes out of scope. Interfaces are reference counted in Delphi, making
them usable for automatic memory management.

����The XE interface to PCRE is a layer of units based on contributions from various people, the
PCRE API header translations in RegularExpressionsAPI.pas

3: The two Classes in compare

Clients are seen in picture 3 as the two classes do the same task. After creating the object RegEx
we set the options:
These are the most important options you can specify:

• preCaseLess Tries to match the regex without paying attention to case. If set,
'Bye' will match 'Bye', 'bye', 'BYE' and even 'byE', 'bYe', etc. Otherwise, only 'Bye'
will be matched. Equivalent to Perl's /i modifier.

• preMultiLine The ^ (beginning of string) and $ (ending of string) regex operaters
will also match right after and right before a newline in the Subject string. This
effectively treats one string with multiple lines as multiple strings. Equivalent to
Perl's /m modifier.

6

• preSingleLine Normally, dot (.) matches anything but a newline (\n). With
preSingleLine, dot (.) will match anything, including newlines. This allows a
multiline string to be regarded as a single entity. Equivalent to Perl's /s modifier.

• Note that preMultiLine and preSingleLine can be used together.
• preExtended Allow regex to contain extra whitespace, newlines and Perl-style

comments, all of which will be filtered out. This is sometimes called "free-spacing
mode".

• preAnchored Allows the RegEx to match only at the start of the subject or right
after the previous match.

• preUngreedy Repeat operators (?, *, +, {num,num}) are greedy by default, i.e.
they try to match as many characters as possible. Set preUngreedy to use
ungreedy repeat operators by default, i.e. they try to match as few characters as
possible.

����Greedy is a strange operator or option. A slight explanation about "greediness".
 "Greedy" takes as many as possible; "non-greedy" takes as few as possible. For example, 'b+'
and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?' returns 'b', 'b*?' returns an empty string,
'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.
The regular expression engine does “greedy” matching by default!

A typical RegEx client session looks like this:

848 with TPerlRegEx.Create do try //Perl Delphi RegEx

849 RegEx:= '<title>(.+?)</title>' ;

850 Options:= [preCaseLess];

851 Subject:= 'testa <title> My TRex on Regex</title> testb' ;

852 If Match then

853 ShowMessageBig(Groups[1]) //SubExpressions[1]) ,MatchedText

854 else

855 ShowMessageBig('Regex Not found');

856 finally

857 Free;

858 end ;

Subject is the RegEx and the string on which Match will try to match RegEx. Match attempts to
match the regular expression specified in the RegEx property on the string specified in the
Subject property. If Compile has not yet been called, Match will do so for you.
Call MatchAgain to attempt to match the RegEx on the remainder of the subject string after a
successful call to Match.

����Compile: Before it can be used, the regular expression needs to be compiled. Match will call
Compile automatically if you did not do so. If the regular expression will be applied in time-critical
code, you may wish to compile it during your application's initialization. You may also want to call
Study to further optimize the execution of the RegEx.
Let’s have a look at the RegEx itself and the magic behind:

'<title>(.+?)</title>'

What’s about this <title> , it must be a global identifier to find or still exists.

+? one or more ("non-greedy"), similar to {1,}?

It captures everything between the first <title> and the first </title> that follows. This is
usually what you want to do with large sequences in a group.

7

����Greedy names: Greedy matching can cause problems with the use of quantifiers. Imagine

that you have a long DNA sequence and you try to match /ATG(.*)TAG/. The “.*” matches 0 or
more of any character. Greedy matching causes this to take the entire sequence between the first
ATG and the last TAG. This could be a very long matched sequence.

���� Note that Regular expressions don’t work very well with nested delimiters or other tree-like
data structures, such as are found in an HTML table or an XML document. We will discuss
alternatives later in a course.

� So far we have learned little about RegEx and the past with a TRex eating words as a
book output to us;-). Now it’s time to run your program at first with F9 (if you haven’t
done yet) and learn something about the 309_regex_powertester2.txt with many code
snippets to explore.

One of them is a song finder in the appendix to get a song list from an mp3 file and play them!

4: Mastering

There are plenty more regular expression tricks and operations, which can be found in
Programming Perl, or, for the truly devoted, Mastering Regular Expressions.
Next we enter part two of the insider information about the implementation.

5: Enter a RegEx building

1.3 RegEx in Delphi and maXbox
The TPerlRegEx class aimes at providing any Delphi, Java or C++Builder developer with the
same, powerful regular expression capabilities provided by the Perl programming language
community, created by Larry Wall.
It is implemented as a wrapper around the open source PCRE library.
The regular expression engine in Delphi XE is PCRE (Perl Compatible Regular Expression). It's a
fast and compliant (with generally accepted RegEx syntax) engine which has been around for

8

many years. Users of earlier versions of Delphi can use it with TPerlRegEx , a Delphi class
wrapper around it.
TRegEx is a record for convenience with a bunch of methods and static class methods for
matching with regular expressions.
I've always used the RegularExpressionsCore unit rather than the higher level stuff because
the core unit is compatible with the unit that Jan Goyvaerts has provided for free for years. That
was my introduction to regular expressions. So I forgot about the other unit. I guess there's either
a bug or it just doesn't work the way one might expect.

For new code written in Delphi XE, you should definitely use the RegEx unit that is part of Delphi
rather than one of the many 3rd party units that may be available. But if you're dealing with UTF-8
data, use the RegularExpressionsCore unit to avoid needless UTF-8 to UTF-16 to UTF-8
conversions.

����The procedure Study procedure Study;

Allows studying the RegEx. Studying takes time, but will make the execution of the RegEx a lot
faster. Call study if you will be using the same RegEx many times. Study will also call Compile
if this had not yet been done.
Depending on what the user entered in Edit1 and Memo1, RegEx might end up being a pretty
complicated regular expression that will be applied to the memo text a great many times. This
makes it worthwhile to spend a little extra time studying the regular expression (later on more).

By the way there’s another tool: Compose and analyze RegEx patterns with RegexBuddy's easy-
to-grasp RegEx blocks and intuitive RegEx tree, instead of or in combination with the traditional
RegEx syntax. Developed by the author of the website http://www.regular-
expressions.info/ , RegexBuddy makes learning and using regular expressions easier than
ever.

6: The RegexBuddy and the GUI

Conclusion: A regular expression (RegEx or regexp for short) is a special text string for describing
a search pattern. You can think of regular expressions as wildcards on steroids. You are probably
familiar with wildcard notations such as *.txt to find all text files in a file manager. The RegEx
equivalent is .*\.txt$.

9

7: The Secret behind this Regular Expression!?

Study method example:

Depending on what the user entered in Edit1 and Memo1, RegEx might end up being a pretty
complicated regular expression that will be applied to the memo text a great many times. This
makes it worthwhile to spend a little extra time studying the regular expression.

31 with PerlRegEx1 do begin

 RegEx:= Edit1.Text;

 Study;

 Subject:= Memo1.Lines.Text;

 Replacement:= Edit2.Text;

 ReplaceAll;

 Memo1.Lines.Text:= Subject;

end ;

��Try reformat phone numbers from 206-685-2181 format to (206) 685.2181 format to get
data back:

You can use back-references when replacing text. Text "captured" in () is given an internal
number; use \number to refer to it elsewhere in the pattern \0 is the overall pattern, \1 is the first
parenthetical capture, \2 the second, ...
Example: "A" surrounded by same character: /(.)A\1/
Example: to swap a last name with a first name:

var name = "Durden, Tyler";

 name = name.replace(/(\w+),\s+(\w+)/, "$2 $1");

 // " Tyler Durden ")

10

� Time of day: For example. 11:30. [01][0-9]:[0-5][0-9] won't work well, because it
would allow such impossible times as 19:00 and 00:30. A more complicated construction works
better: (1[012] | [1-9]) :[0-5][0-9] . That is, a 1 followed by 0, 1, or 2, OR any digit 1-9.

Feedback @
max@kleiner.com

Literature:
Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maXbox and RegEx EKON Slide Show:

http://www.softwareschule.ch/maxbox.htm

http://www.softwareschule.ch/download/A_Regex_EKON16.pdf

http://www.regular-expressions.info/

http://regexpstudio.com/tregexpr/help/RegExp_Syntax.html

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

http://sourceforge.net/projects/delphiwebstart

11

1.4 Appendix

EXAMPLE: Mail Finder

procedure delphiRegexMailfinder;

begin

 // Initialize a test string to include some email addresses. This would
normally be your eMail.

 TestString:= '<one@server.domain.xy>, another@oth erserver.xyz';

 PR:= TPerlRegEx.Create;

 try

 PR.RegEx:= '\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z] {2,4}\b';

 PR.Options:= PR.Options + [preCaseLess];

 PR.Compile;

 PR.Subject:= TestString; // <-- tell PR where t o look for matches

 if PR.Match then begin

 WriteLn(PR.MatchedText); // Extract first ad dress

 while PR.MatchAgain do

 WriteLn(PR.MatchedText); // Extract subseque nt addresses

 end;

 finally

 PR.Free;

 end;

 //Readln;

end;

EXAMPLE: Songfinder

with TRegExpr.Create do try

 gstr:= 'Deep Purple';

 modifierS:= false; //non greedy

 Expression:= '#EXTINF:\d{3},'+gstr+' - ([^\n].*)' ;

 if Exec(fstr) then

 Repeat

 writeln(Format ('Songs of ' +gstr+': %s', [Match[1]]));

 (*if AnsiCompareText(Match[1], 'Woman') > 0 then begin
 closeMP3;

PlayMP3(‘..\EKON_13_14_15\EKON16\06_Woman_From_Toky o.mp3');

 end;*)

 Until Not ExecNext;

 finally Free;

end;

//************************************ Code Finishe d******************************

12

1.5 Appendix RegexBuddy in Action

1.6 Appendix String RegEx methods

.match(regexp) returns first match for this string against the
given regular expression; if global /g flag is

used, returns array of all matches

.replace(regexp, text) replaces first occurrence of the regular
expression with the given text; if global /g flag

is used, replaces all occurrences

.search(regexp) returns first index where the given regular
expression occurs

.split(delimiter[,limit]) breaks apart a string into an array of strings
using the given regular as the delimiter; returns

the array of tokens

