
1/36

Closures & Functional
Programing

They are a block of code plus the
bindings to the environment they came
from (Ragusa Idiom).

“Refactoring is improving the design of code after it
has been written”

2/36

Agenda EKON 06.11.2012

• Closure as a Code Block

• Long History

• Dynamic Languages

• Functional Programming Examples

• Closures & Refactoring

• Case Study Experiences with a Polygraph Design

• Links

3/36

Code Blocks

How many times have you written a piece of
code and thought “I wish I could reuse this
block of code”?

How many times have you refactored existing
code to remove redundancies?

How many times have you written the same
block of code more than once before
realising that an abstraction exists?

4/36

Why Closures?

Languages that support closures allow you to
define functions with very little syntax.
While this might not seem an important
point, I believe it's crucial - it's the key to
make it natural to use them frequently.
Look at Lisp, Smalltalk, or Ruby code and
you'll see closures all over the place.

UEB: demos/threads/thrddemo.exe

5/36

What‘s a closure ?
Never touch a running system ?!:
//Calls n times a value:
• python
•
• def n_times(a_thing)
• return proc{ |n| a_thing * n}
• end

• c1 = n_times(23)
• puts c1.call(1) # -> 23
• puts c1.call(3) # -> 69

6/36

Closure Counter
• def counter(start)

return proc {start *= 3}
end

k = counter(1)
g = counter(10)

• puts k.call # -> 3
• puts k.call # -> 9
• puts g.call # -> 30
• puts k.call # -> 27

UEB: 8_pas_verwechselt.txt

7/36

Closure: Definition

• Closures are reusable blocks of code that
capture the environment and can be passed
around as method arguments for immediate
or deferred execution.

• Simplification: Your classes are small and
your methods too; you’ve said everything and
you’ve removed the last piece of unnecessary
code.

8/36

Closure time
• def times(n):
def _f(x):
return x * n

return _f

• t3 = times(3)
• print t3 #
• print t3(7) # 21

9/36

Closure in Python

def generate_power_func(n):
def nth_power(x): //closure

return x**n
return nth_power

>>> raised_to_4 = generate_power_func(4)

debug:
id(raised_to_4) == 0x00C47561 == id(nth_power)).

>>> raised_to_4(2) � 16

10/36

History

• Lisp started in 1959
• Scheme as a dialect of Lisp

• One feature of the language was function-
valued expressions, signified by lambda.

• Smalltalk with Blocks.
• Lisp used something called dynamic

scoping.

11/36

Dynamic Languages
The increase in importance of web services, however, has

made it possible to use dynamic languages (where
types are not strictly enforced at compile time) for large
scale development. Languages such as Python, Ruby,
Delphi and PHP.

Scheme was the first language to introduce closures,
allowing full lexical scoping, simplifying many types of
programming style.
to discuss:
for i:= 0 to SourceTable.FieldCount - 1 do

DestTable.Fields[i].Assign(SourceTable.Fields[i]);
DestTable.Post;

12/36

Closure in Math Optimization

13/36

Function Pointers
• Possible Callback or Procedure Type

• Type
TMath_func = Procedure(var x: float); //Proc Type

procedure fct1(var x: float); //Implement
begin
x:= Sin(x);

end;

• var
• fct1x:= @fct1 //Reference
• fct_table(0.1, 0.7, 0.4, fct1x); //Function as Parameter
• fct_table(0.1, 0.7, 0.4, @fct1); //alternativ direct

271_closures_study_workingset2.txt

14/36

Anonymous I
type
TWriter = reference to procedure;

var xt: TWriter;
begin
xt:= procedure
begin

writeln('Display this Text Ext');
end;

xt;
readln;
end;

15/36

Anonymous II
type

TIntegerConvertFunc = reference to function(s: string):
integer; //Has a return type

var
myFunction: TIntegerConvertFunc;

begin
myfunction:= function(s: string): integer
begin

result:= IntToStr(s);
end;

// ...

16/36

Delegates
Method Pointers (Object Organisation)
• ppform:= TForm.Create(self);
• with ppform do begin
• caption:= 'LEDBOX, click to edit, dblclick write out pattern'+
• ' Press <Return> to run the Sentence';
• width:= (vx*psize)+ 10 + 300;
• height:= (vy*psize)+ 30;
• BorderStyle:= bsDialog;
• Position:= poScreenCenter;
• OnKeyPress:= @FormKeyPress
• OnClick:= @Label1Click;
• OnClose:= @closeForm;
• Show;
• end

UEB: 15_pas_designbycontract.txt

17/36

Closure as Parameter
• Consider the difference

• def managers(emps)
• return emps.select {|e| e.isManager}
• end

Select is a method defined on the Ruby collection class. It takes a
block of code, a closure, as an argument.

• In C or Pascal you think as a function pointer
• In Java as an anonymous inner class
• In Delphi or C# you would consider a delegate.

18/36

Function Conclusion

Step to Closure Callback
A block of code plus the bindings to the

environment they came from.

This is the formal thing that sets
closures apart from function pointers
and similar techniques.

UEB: 14_pas_primetest.txt

19/36

Closure as Object

• When a function is written enclosed in another
function, it has full access to local variables from the
enclosing function; this feature is called lexical scoping.

• Evaluating a closure expression produces a closure
object as a reference.

• The closure object can later be invoked, which results
in execution of the body, yielding the value of the
expression (if one was present) to the invoker.

20/36

Closure as Callback

• function AlertThisLater(message, timeout)
{

function fn() { alert(message); }
window.setTimeout(fn, timeout);

}
AlertThisLater("Hi, JScript", 3000);

A closure is created containing the message parameter, fn is
executed quite some time after the call to AlertThisLater has
returned, yet fn still has access to the original content of message!

21/36

Closure SEQ

22/36

Closure as Thread

groovy> Thread.start { ('A'..'Z').each {sleep 100;
println it} }

groovy> Thread.start { (1..26).each {sleep 100;
println it} }

>>> A
>>> 1
>>> B
>>> 2

23/36

Lambda Expression

• There are three main parts of a function.
1. The parameter list
2. The return type
3. The method body

• A Lambda expression is just a shorthand
expression of these three elements.

// C#
• string s => Int.Parse(s)

24/36

Closure Syntax I
procedure OuterMethod;
var upperScope: string;

procedure InnerMethod;
var innerScope: string;
begin

// Here, upperScope and innerScope are visible.
// lowerScope is not visible.
writeln(text);

end;
var lowerScope: string;
begin
// upperScope and lowerScope are visible here.

InnerMethod;
end;

25/36

Closure Syntax II
procedure TMyClass.DoCount;
var j: integer;
ShowCounter: TProc; // Method no longer has a parameter.
begin

ShowCounter:= procedure
begin
// j is known here because it is wrapped in a closure
// and made available to us!

writeln(IntToStr(j));
end;

for j:= 1 to 10 do
ShowCounter; // j is no longer passed

end;

26/36

Syntax Schema
>>> def outer(x):

... def inner(y):
... return x+y

... return inner
...
• >>> customInner=outer(2)
• >>> customInner(3)
• result: 5

27/36

Let‘s practice
• 1
• 11
• 21
• 1211
• 111221
• 312211
• ???
Try to find the next pattern, look for a rule or

logic behind !

28/36

Before C.

function runString(Vshow: string): string;
var i: byte;
Rword, tmpStr: string;
cntr, nCount: integer;
begin
cntr:=1; nCount:=0;
Rword:=''; //initialize
tmpStr:=Vshow; // input last result
for i:= 1 to length(tmpStr) do begin

if i= length(tmpstr) then begin
if (tmpStr[i-1]=tmpStr[i]) then cntr:= cntr +1;
if cntr = 1 then nCount:= cntr
Rword:= Rword + intToStr(ncount) + tmpStr[i]

end else
if (tmpStr[i]=tmpStr[i+1]) then begin

cntr:= cntr +1;
nCount:= cntr;

end else begin
if cntr = 1 then cntr:=1 else cntr:=1; //reinit counter!
Rword:= Rword + intToStr(ncount) + tmpStr[i] //+ las t char(tmpStr)

end;
end; // end for loop
result:=Rword;
end;

UEB: 9_pas_umlrunner.txt

29/36

After C.
function charCounter(instr: string): string;
var i, cntr: integer;

Rword: string;
begin
cntr:= 1;
Rword:=' ';

for i:= 1 to length(instr) do begin
//last number in line
if i= length(instr) then

concatChars()
else
if (instr[i]=instr[i+1]) then cntr:= cntr +1
else begin

concatChars()
//reinit counter!
cntr:= 1;

end;
end; //for

result:= Rword;
end; UEB: 009_pas_umlrunner_solution_2step.txt

30/36

Closure Advantage – We
can avoid:

Bad Naming (no naming convention)
Duplicated Code (side effects)
Long Methods (to much code)
Temporary Fields (confusion)
Long Parameter List (Object is missing)
Data Classes (no methods)

• Large Class
• Class with too many delegating methods
• Coupled classes UEB: 33_pas_cipher_file_1.txt

31/36

Refactoring Closure

Delete a class with referenceSafe DeleteModel

Getter- und Setter einbauenEncapsulate FieldsClass

Ersetze vererbte Methoden durch Delegation
in innere Klasse

Replace Inheritance with
Delegation

Component

Erzeuge Referenzen auf Klasse mit
Referenz auf implementierte Schnittstelle

Use InterfaceInterface

Aus Methoden ein Interface erzeugenExtract InterfaceInterface

Extract a Codepassage or define a ClosureExtract MethodClass

Ersetzen eines Ausdrucks durch einen
Methodenparameter

Introduce ParameterClass

Aus Methoden, Eigenschaften eine
Oberklasse erzeugen und verwenden

Extract SuperclassClass

Verschieben eines PackagesMove PackagePackage

Umbenennen eines PackagesRename PackagePackage

DescriptionRefactoring FunctionUnit

32/36

Case Study: The Polygraph
• Design Case Study Polyp
An easy one states that only one statement should exists for every source

line, like next and put a Var lifetime as short as possible.

Can you read (Yes-No)?
if YES then OK

if NO then you are a Liar!

var Rec: TMyRec;
begin ..

with Rec do begin
.. title:= ‘Hello Implikation';
end;

end;

33/36

Polyp Design

Dependency Inversion

34/36

Final - $Closure Test

35/36

Closure Links:

• http://gafter.blogspot.com/2007/01/definition-of-
closures.html

• Michael Bolin, “Closure: The Definitive Guide", O'Reilly
Media; Auflage: 1 (20. Oktober 2010).

• http://www.javac.info/
• http://sourceforge.net/projects/maxbox/
• � Refactoring Martin Fowler (1999, Addison-Wesley)
• � http://www.softwareschule.ch/download/closures_report.pdf

• � http://www.refactoring.com

36/36

This is not The End:
Q&A?

max@kleiner.com
softwareschule.ch

