
Regular Expressions

The Purpose

• Regular expressions are the main way Perl matches
patterns within strings. For example, finding pieces of
text within a larger document, or finding a restriction site
within a larger sequence.

• There are 3 main operators that use regular expressions:
1. matching (which returns TRUE if a match is found

and FALSE if no match is found.
2. substitution, which substitutes one pattern of

characters for another within a string
3. split, which separates a string into a series of

substrings
• Regular expressions are composed of characters,

character classes, metacharacters, quantifiers, and
assertions.

Match Operator
• If you want to determine whether a string matches a

particular pattern, the basic syntax is:
$str = “This is a string”;
if ($str =~ /ing/) { print “match”; }
else { print “no match”; }

• Two important things here: “=~” is the match operator. It
means “search the preceding string ($str) for the pattern
between the slashes (“ing” here).

• Simple matching returns TRUE or FALSE. Anything you
put between the slashes will be used as a test pattern,
which Perl attempts to match with the string.

Literal Matching
• Note that the pattern must be an EXACT match. The following won’t

work because there is a space between the “n” and the “g”.
$str = “This is a string”;
if ($str =~ /in g/) { print “match”; }

• You can put a variable in place of the match string:
$pattern = “ing”;
if ($str =~ /$pattern/) { print “match”; } # works!

• One simple modification: an “i” after the second slash makes the
matching case-insensitive. The default is case-sensitive.
For example:

$str = “This is s string”;
$str =~ /this/ ; # does NOT match
$str =~ /this/i ; # matches

Basic Quantifiers
• Quantifiers are placed after the character you want to match.
• * means 0 or more of the preceding character
• + means 1 or more
• ? Means 0 or 1
• For example:

my $str = “AACCGG”;
$str =~ /A+/; # matches AA
$str =~ /T+/; # no match
$str =~ /T*/; # matches 0 or more T’s
$str =~ /Q*/; # matches: 0 or more Q’s

• Matching positive or negative 23:
$str =~ /-?23/; # i.e. 0 or 1 –’s

More Quantifiers

• You can specify an exact number of repeats of a
character to match using curly braces:

$str = “doggggy”;
$str =~ /dog{4}y/; # matches 4 g’s
$str =~ /dog{3}y/; # no match
$str =~ /dog{3}/; # matches--note no trailing “y” in the

pattern.
• You can also specify a range by separating the minimum

and maximum by a comma within the curly braces:
$str =~ /dog{1,5}y/; # matches 1,2, 3, 4, or 5 g’s

• You can also specify a minimum number of characters to
match by putting a comma after the minimum number:

$str =~ /dog{3,}; # matches 3 or more g’s

Grouping with Parentheses

• If you want to match a certain number of
repeats of a group of characters, you can
group the characters within parentheses.
For example, /(cat){3}/ matches 3 reps of
“cat” in a row: “catcatcat”. However,
/cat{3}/ matches “ca” followed by 3 t’s:
“cattt”.

• Parentheses also invoke the pattern
matching memory, to be discussed later.

Basic Metacharacters
• Some characters mean something other than the literal character.
• For example, “+” means “1 or more of the preceding character.

What if you want to match a literal plus sign? To do this, escape the
+ by putting a backslash in front of it: \+ will match a + sign, but
nothing else.

• To match a literal backslash, use 2 of them: \\.

• Another important metacharacter: “.” matches any character. Thus,
/ATG…UGA/ would match ATG followed by 3 additional characters
of any type, followed by UGA.

• Note that /.*/ matches any string, even the empty string. It means: 0
or more of any character”.

• To match a literal period, escape it: \.
• The “.” doesn’t match a newline. There’s a way around this we will

discuss later.
• List of characters that need to be escaped: \ | / () [] { } ^ $ * + ? .

Basic Assertions
• An assertion is a statement about the position of the match pattern within a

string.
• The most common assertions are “^”, which signifies the beginning of a

string, and “$”, which signifies the end of the string.
• For example:

my $str = “The dog”;
$str =~ /dog/; # matches
$str =~ /^dog/; # doesn’t work: “d” must be the first character
$str =~ /dog$/; # works: “g” is the last character

• Another common assertion: “\b” signifies the beginning or end of a word.
For example:

$str = “There is a dog”;
$str =~ /The/ ; # matches
$str =~ /The\b/ ; # doesn’t match because the “e” isn’t at the end of the

word

Character Classes

• A character class is a way of matching 1 character in the
string being searched to any of a number of characters
in the search pattern.

• Character classes are defined using square brackets.
Thus. [135] matches any of 1, 3, or 5.

• A range of characters (based on ASCII order) can be
used in a character class: [0-7] matches any digit
between 0 and 7, and [a-z] matches and small (but not
capital) letter.

--note that the hyphen is being used as a
metacharacter here. You can’t use the backslash
escape in character classes. To match a literal hyphen
in a character class, it needs to be the first character in
the class. Thus. [-135] matches any of -, 1, 3, or 5. [-0-9]
matches any digit or the hyphen.

More Character Classes

• To negate a character class, that is, to match any
character EXCEPT what is in the class, use the caret ^
as the first symbol in the class. [^0-9] matches any
character that isn’t a digit. [^-0-9] ,matches any
character that isn’t a hyphen or a digit.

--here the caret is a metacharacter. to match a
literal caret, put it in any position except the first position.

• The only other character inside a character class that
must be escaped is the closing square bracket. To
match it as a literal, escape it with a backslash:[0-9\]]
matches any digit or].

• Quantifiers can be used with character classes. [135]+
matches 1 or more of 1, 3, or 5 (in any combination).
[246]{8} matches 8 of 2, 4, and 6 in any combination.

Pre-defined Character Classes

• Several groups of characters are so widely used that
they are given special designators. These do not need
to be put inside square brackets unless you want to
include other characters in the class.

• \d = any digit = [0-9]
• \s = whitespace (spaces, tabs, newlines) = [\t\n]
• \w - word character = [a-zA-Z0-9_]
• The negation of these classes use the capital letters: \D

= any non-digit, \S = any non-whitespace character, and
\W = any non-word character.

Alternatives

• Alternative match patterns are separated
by the “|” character. Thus:

$str = “My pet is a dog.”;
$str =~ /dog|cat|bird/; # matches “dog”

or “cat” or “bird”.
• Note there is no need to group the

characters with parentheses. Use of the |
implies all of the characters between the
delimiters.

Memory

• It is possible to save part or all of the string that matches
the pattern. To do this, simply group the characters to
be saved in parentheses. The matching string is saved
in scalar variables starting with $1.

$str = “The z number is z576890”;
$str =~ /is z(\d+)/;
print $1; # prints “567890”

• Different variables are counted from left to right by the
position of the opening parenthesis:

/(the ((cat) (runs)))/ ;
captures: $1 = the cat runs; $2 = cat runs; $3 = cat; $4

= runs.
• The numbered variables only work within the smallest

block (delimited by {}) that contains the regular
expression. They are reset to undef outside that block.

More on Memory

• if you are still within the regex, the memory variables are
called \1, \2, etc. instead of $1, $2, etc. These variables
work within a match to allow duplication of a pattern. For
example, /([AG]{3})CCGG\1/ matches AGGCCGGAGG.
Note that the two sides, the pattern in the parentheses
and the duplication in \1, must match exactly, even
though the pattern in parentheses ia a character class.

• If several alternatives are captured by parentheses, only
the one that actually matches will be captured:

$str = "My pet is a cat";
$str =~ /\b(cat|dog)\b/;
print $1; will print "cat".

Greedy vs. Lazy Matching
• The regular expression engine does “greedy” matching by default. This

means that it attempts to match the maximum possible number of
characters, if given a choice. For example:

$str = “The dogggg”;
$str =~ /The (dog+)/;
print $1;

This prints “dogggg” because “g+”, one or more g’s, is interpreted to mean
the maximum possible number of g’s.

• Greedy matching can cause problems with the use of quantifiers. Imagine
that you have a long DNA sequence and you try to match /ATG(.*)TAG/.
The “.*” matches 0 or more of any character. Greedy matching causes this
to take the entire sequence between the first ATG and the last TAG. This
could be a very long matched sequence.

• Lazy matching matches the minimal number of characters. It is turned on
by putting a question mark “?” after a quantifier. Using the examples above,

$str =~ /The (dog+?)/; print $1; # prints “dog”
and /ATG(.*?)TAG/ captures everything between the first ATG and the first
TAG that follows. This is usually what you want to do with large sequences.

A Few Examples

• 1. Finding blank lines. They might have a space
or tab on them. so use /^\s*$/

• 2. matching letters only. The problem is, \w is
digits and underscore in addition ot letters. You
can use /^A-Za-z$/, which requires that every
character in the entire string be a letter: Or try
/^[^\W\d_]$/. For DNA bases, /^ACGTacgt$/
works, but realize that “N” is often used as a
wildcard character in sequences.

More

• 3. Words in general sometimes have
apostrophe(') and hyphen (-) in them, such as
o'clock and cat's and pre-evaluation.. Also, there
are some common numerical/letter mixed
expressions: 1st for first, for example. So, \w by
itself won’t match everything that we consider a
word in common English.

• 4. Words can be found within words: "there goes
the cat" =~ m/the/ matches the first word, not the
fourth, but =~ m/\bthe\b/ matches the word "the"
only.

More Examples

• 5. time of day: For example. 11:30. [01][0-9]:[0-5][0-9]
won't work well, because it would allow such impossible
times as 19:00 and 00:30. A more complicated
construction works better: (1[012] | [1-9]) :[0-5][0-9].
That is, a 1 followed by 0, 1, or 2, OR any digit 1-9.

• 6. Things within a delimiter: e.g. You want what's within the
tags, everything between <a and >, so you try
m/<a(.*?)>/. Note the need for lazy evaluation here, as
there is probably more than one tag on the page. But
still, this expression picks up the ending >, because it
matches .*. So, use m/<a[^>]*>/ That is, zero or more
characters that are not >. Usually you don’t really want
.*

Still More Examples

• 7. BLAST scores (e-values) can be either decimals or
exponents: 0.05 and 2e-40 and both typical values. To
capture these numbers, use ([-e.\d]+). Also, sometimes
BLAST scores start with e: e-35, for example. Perl
doesn’t recognize this as a number, so you have to add
a leading “1”:

$score = "1" . $score if substr($score, 0, 1) eq "e";

8. Regular expressions don’t work very well with nested
delimiters or other tree-like data structures, such as are
found in an HTML table or an XML document. We will
discuss alternatives later in the course.

Alternative Delimiters

• We have been enclosing all of the match
patterns between slashes “/”. This is the default
method.

• However, you can use almost any pair of non-
word characters as delimiters if you precede
them with an “m”. Thus all of these work:

m<cat>, m@cat@ , m\cat\.
• Use of alternative delimiters leads quickly to

obfuscation, so I avoid them. Especially, ? and ‘
as delimiters have special meanings.

Split

• So far we have only looked at simple matching,
sometimes with the use of memory for capturing parts of
the match. Simple matches just return TRUE or FALSE.
We will now look at 2 other uses of regular expressions.

• The “split” operator uses regular expressions to
determine where to split the string. Every matching
sequence is removed and the remaining parts are put
into an array:

$str = “I have 2 cats and 3 cars at home”;
@arr = split /a[rt]/, $str;

@arr has 3 elements: $arr[0] = “I have 2 c” , $arr[1] =
“s and 3 c” , and $arr[2] = “s at home”.

Substitution

• A common problem is the need to substitute one piece of
text for another, or to remove certain parts of text. This
is done with the substitution operator s///.

• The basic syntax:
$str =~ s/initial_pattern/substituted_chars/;

• Note the initial “s”, followed by a regular expression (the
first argument), followed by the group of characters that
are to be substituted in (second argument).

• For example:
$str = “A cat ia a nice pet”;
$str =~ s/cat/dog/;
print $str; # prints “A dog is a nice pet”

More Substitution

• The first argument in a substitution is a regular
expression, using the same metacharacters, assertions,
alternatives, character classes and parentheses as
pattern matching. Capturing groups of characters within
parentheses also works.

• The second argument, the pattern that is substituted in,
is NOT a regular expression. rather it is basically a
double quoted string without the quotes. You can do
variable substitution, and especially you can use $1, $2,
etc. captured form the first argument. But, only 1 string
is going to be substituted in. Things like character
classes and alternatives make no sense for the second
argument.

Still More Substitution
• By default, substitution only makes one change in a string. If you

want to change all examples of the matching pattern, you need to
add a “g” on the end:

$str = “A cat is a cat is a cat”;
$str =~ s/cat/dog/; # gives “A dog is a cat is a cat”
$str =~ s/cat/dog/g; # gives “A dog is a dog is a dog”

• As for simple matching, substitution can be made case-insensitive
by adding an “i” to the end:

$str = “Cat”;
$str =~ s/cat/dog/; # no changes made; “cat” doesn’t match “Cat”
$str =~ s/cat/dog/i; # $str is now “dog”

• You can also use substitution to remove characters. Thus
s/[^ACGT]//g finds any character that isn’t A, C, G, or T and replaces
it with nothing.

Substitution and Assignment
• Note that unlike many Perl operators, the substitution operator

directly works on the string being matched. Thus, $str =~ s/cat/dog/
results in $str being changed.

• If you want to keep the original string and also produce an altered
string, you need to do an assignment as well as a substitution. A
problem is that =~ has a higher precedence than =, so a
construction like this is used:

($newstr = $oldstr) =~ s/cat/dog/;
• First, $oldstr is copied into $newstr, then $newstr is substituted.

$oldstr is not changed by this at all.
• If you change the parentheses:

$newstr = ($oldstr =~ s/tcat/dog/);
or don't use them at all, substitution is done on $oldstr, and $newstr
gets the number of substitutions done (i.e., s/// is being used in a
scalar context).

Transliteration
• The transliteration operator tr/// looks a lot like the substitution

operator, but its function is quite different. Transliteration converts
EACH instance of an individual character in the first argument to the
character in the same position in the second argument. For
example:

$str = “ACCGTTAC”;
$str =~ tr/ACGT/TGCA/;

$str is now TGGCAATG, which is the complement of this DNA
sequence. (You can also use “$str = reverse $str;” to get the
reverse-complement).

• Another useful transliteration: converting to all uppercase:
$str =~ tr/a-z/A-Z/;

• The first and second arguments are both just lists of individual
characters to be replaced. The sequence in which they appear
within the arguments is irrelevant; there are no character classes or
alternatives with tr///. Also, variable interpolation doesn’t work.

Counting Characters with
Transliteration

• If the second argument is empty, the characters in the
first argument are simply replicated; no actual changes
occur in the string. However, tr/// returns the number of
characters matched, so this is a good way to count the
number of occurrences of given characters.

$str = “AGCCTNNNCGTTANTA”;
$num = ($str=~ tr/ACGT//);

returns the number of A, C, G and T, without
counting the N’s.

• Note the position of the parentheses, which is different
from a similar usage with the s/// operator. The
parentheses could be left off here, because =~ has a
higher precedence than =.

Progressive Matching and Position

• Sometimes you want to find all instances of a pattern and give their
positions. This is done with a while loop and a “g” at the end of the match
pattern (g for “global”).

while ($str =~ /ATG/g) { }
• The position of the next character after the end of the matched string is

found using “pos” followed by the name of the string variable being
matched:

while ($str =~ /ATG/g) {
my $position = pos $str;
my $start_position = $position - 4;
print “$start_position, “;

}
• In this construction, the regular expression engine starts at the beginning of

the string and moves down it looking for matches. At each match, the body
of the while loop executes, and the position of the match is reported with
“pos”. Then, the regex engine starts up again, just after the position of the
previous match and looks for the next match. This continues until the string
is exhausted.

And More!

• There are plenty more regular expression
tricks and operations, which can be found
in Programming Perl, or, for the truly
devoted, Mastering Regular Expressions.

