

maXbox Starter 25
Start with maXbox Configuration V3

1.1 From Boot loader to CLI
If a maXbox script or app is programmed to assume the host standard, it is always started relative
to the path where the maXbox3.exe as the host itself is:

 playMP3(ExePath+ 'examples\maxbox.mp3');

So for example you want to play a song or refer to other external resources in a script, your
external file will be found relative to ExePath() :

E:\Program Files\maxbox\maxbox3\'examples\maxbox.mp3'

In this case ExePath is E:\Program Files\maxbox\maxbox3 .

ExePath is a useful function where you always get the path of maXbox.
If someone tries to start (install) the script or the app to or from a different drive for space or
organizational reasons, it may fail to (install) or to run the script after installation1.
A solution might be an absolute path:

myMemo.lines.saveToFile ('D:\data\examples\mymemo_tester.txt');

This problem might not be identified in the testing process, since the average user installs to the
default drive of the archive and directory and testing might not include the option of changing the
installation directory.
You find all info concerning run environment of the app and script in menu
/Program/Information/…

1 You don’t have to install maXbox or a script anyway, just unzip or copy the file

2

Another solution to prevent hard coded literals are a constant or the call of a user dialog. An
indirect reference, such as a variable inside the program called ‘FileName ’, could be expanded
by accessing a "select browse for file" dialog window, and the program code would not have to be
changed if the file moved.

procedure GetMediaData(self: TObject);

begin

 if PromptForFileName(selectFile, 'Media files (*.mp3)|*.mp3|*.mpg)|*.mpg', '' ,

 'Select your mX3 media fil e Directory' ,

 'D:\kleiner2005\download' , False)

 then begin

 // Display this full file/path value

However it is advisable for programmers and developers not to fix the installation path of a
program or hard code some resources, since the default installation path is different in different
natural languages, and different computers may be configured differently. It is a common
assumption that all computers running Win have the primary hard disk labelled as drive C:, but
this is not the case.

As you will see the configuration of maXbox is possible with a boot loader script and a simple ini-
file too. Extensions are possible with the Open Tools API and a small CLI (Command Line
Interface). Hope you did already read Starters 1 till 24 at:

http://sourceforge.net/apps/mediawiki/maxbox/

First we start with the boot loader and his functionality.
maXbox as the script loader system has so called Special Folders which organize files logically
on the hard disk. So you can also copy all 6 folders and root files to a folder on your USB-stick
that stores the same content in your maXbox installation folder and it will start from the stick!

23.05.2013 19:54 <DIR> docs
23.05.2013 19:54 <DIR> examples
09.05.2013 14:58 <DIR> exercices
09.05.2012 21:50 <DIR> crypt
12.05.2013 22:04 <DIR> source
17.03.2013 13:14 <DIR> web
29.03.2013 23:59 97'370 bds_delphi.dci
11.12.2007 21:04 254'464 dbxint30.dll
11.11.2012 19:13 580'096 dmath.dll
09.04.2013 13:43 5'426 firstdemo3.txt
28.11.2010 00:39 3'866 firstdemo3.uc
27.10.2005 22:54 103'424 income.dll
07.11.2010 18:53 138 maildef.ini
07.02.2013 00:23 10'544 maxbootscript_. txt
21.10.2011 18:13 59'060 maxbox.mp3
02.01.2009 02:05 71'807 maxbox.png
11.05.2013 23:49 11'887'616 maxbox3.exe
11.05.2013 21:38 5'133'220 maxbox3clx
12.05.2013 23:06 994 maxboxdef.ini
03.12.2012 00:33 12'503 maxboxerrorlog. txt
12.05.2013 15:45 42'773 maxboxnews.htm
12.05.2013 00:46 2'309'571 maxbox_function s_all.pdf
21.04.2012 09:48 9'533 maxdefine.inc
14.11.2005 12:00 383'488 midas.dll
10.12.2012 09:37 17'202 pas_includebox. inc
12.05.2013 00:47 36'854 readmefirst_max box3.txt
11.10.2010 22:49 135'168 TIFFRead.dll

3

When you start the box a possible boot script is loaded. Within the boot script to the IDE, you can
perform common source control tasks, such as file check in, check out, and of course change IDE
settings and synchronization of your current version. This is a script where you can put all the
global settings and styles of the IDE of maXbox, for example:

with maxForm1 do begin

 caption:= caption + 'Boot Loader Script maxbootscript.txt' ;

 color:= clteal;

 IntfNavigator1Click(self);

 tbtnCompile.caption:= 'Compile!' ;

 tbtnUsecase.caption:= 'UML UC' ;

 maxform1.ShellStyle1Click(self);

 memo2.font.size:= 16;

 Info1Click(self);

 end;

 Writeln('BOOTSCRIPT ' +BOOTSCRIPT+ ' loaded')

When you want to see a complete copy of your file, look at:

07.02.2013 00:23 10'544 maxbootscript_. txt

When you delete the underscore in the filename to maxbootscript.txt the system performs
next time when you load maXbox and presents you with a different view. This boot script results
in the picture 2 below for example. The trick of renaming the file has a simple explanation. The
ini-file default to load the boot script is YES so it can be easier to rename the file instead of
change the ini-file to set to YES, cause of missing permissions, testing or so: BOOTSCRIPT=Y
Maybe you want to change the colour or the caption of a button or a frame, you can do this by
accessing the Open Tools API of the object maxForm1.

Configuration Step by Step

4

In this lesson we deal with multiple instances of maXbox and his creation. You can create
multiple instances of the same app to execute parallel code, just type <F4>. For example, you
can launch a new instance within a script of the box in response to some user action, allowing
each script to perform the expected response.

ExecuteShell(ExePath+'maxbox3.exe','"'+ExePath+'exa mples\'+ascript+'"');
S_ShellExecute(ExePath+'maxbox3.exe',ExePath+'examp les\'+ascript,secmdopen)
;

So creating multiple instances results in launching multiple instances of the application and the
scripts too. There’s no good way to launch one application (maXbox) with multiple scripts in it.
Maybe with OLE Automation in that sense you open Office programs (word, excel) or other
external shell objects. CreateOleObject creates a single uninitialized object of the class
specified by the ClassName parameter. ClassName specifies the string representation of the
Class ID (CLSID). CreateOleObject is used to create an object of a specified type when the
CLSID is known and when the object is on a local or in-proc server. Only the objects that are not
part of an aggregate are created using CreateOleObject .

����Try the example of OLE Objects 318_excel_export3.TXT and the tutorial 19.

An external script or a least a second one could also be a test case to compare the behaviour.
Each test case and test project is reusable and rerunnable, and can be automated through the
use of shell scripts or console commands.

��������An advantage of using S_ShellExecute or ShellExecute3 is no wait condition, means
less CPU power and consumption and loose coupling.

In this tutorial we show 4 steps to build a configuration:

1. First building block is the use of a boot script maxbootscript.txt .
2. Second we jump to the template file bds_delphi.dci
3. Third the Ini-file maxboxdef.ini environment and code settings.
4. Forth we set an include file in our script, like pas_includebox.inc to call external

functions of a unit, it’s very powerful, but tough to built.

Ok we have been finished the boot script what about the template file. The template file
bds_delphi.dci stands for code completion templates.
In the Code Editor, type an object, class, structure or a pattern name followed by <Ctrl J> to
display the object. But its not a full code completion where you get after the dot (.) a list of types,
properties, methods, and events, if you are using the Delphi or C# languages.
It’s more a template copy of your building blocks. In the menu /Debug/Code Completion List
you get the defaults, here is an extract:

[cases | case statement | Borland.EditOptions.Pasca l]

case | of

 : ;

 : ;

end;

[trye | try except | Borland.EditOptions.Pascal]

try

 |

except

end;

5

My favour is: myform<Ctrl J> which represents or copies a form builder in your editor.

���� Useless to say that you can add your own templates to the file. Many of the Code Editor
features are also available when editing HTML and CSS files. Code Completion (CTRL+J) and
syntax highlighting are available for HTML, XML and CSS files.

����Most of the Open Tools API declarations reside also in that file bds_delphi.dci. (at the
bootom) Note: Call all methods with maxForm1., e.g.:
 maxForm1.ShellStyle1Click(self);

����To stop for example a while loop, click on Options/Show Include (boolean switch)!
Then in your script you write:
 //Control a loop in a script with the form event in menu Options:
 IncludeON; //control the while loop
 while maxform1.ShowInclude1.checked do begin

When I start a loop through another one small UI like a button a service or script has started
successfully and it is running in the machine. It is running even I restart another instance. But
then you can stop the loop with a click on Options/Show Include cause the event is a
condition on the while statement. Normally you would handle this in a form but for scripts without
a form or a timer it’s a useful way of control a loop flow.

2: Boot Script Loaded

���� Also a standard approach to break a running loop in a script or configuration is the well known
KeyPress or IsKeyPressed function you can check:

procedure LoopTest;
begin
 Randomize;
 REPEAT
 Writeln(intToStr(Random(256*256)));

6

 UNTIL isKeyPressed; //on memo2 output
 if isKeypressed then writeln(Key has been pressed! ');
end;

As you know the memo2 is the output window as the shell, so the keypress is related to memo2;
by the way memo1 is still the editor!
With another function KeyPressed(VK: Integer): Boolean; returns True, if key VK has
been pressed.

Let’s jump to the Ini-file. Many applications use ini files to store configuration information. Using
ini files has the advantage that they can be used in cross-platform applications and they are easy
to read and edit.

����The ini file format is still popular, many configuration files (such as Desktop or Persistence
settings file) are in this format. This format is especially useful in cross-platform applications,
where you can't always count on a system Registry for storing configuration information.
I never was a friend of the Registry so you can also start maXbox from a stick.
In maXbox code, TIniFile is the game of advantage. When you instantiate the TIniFile or
TMemIniFile object, you pass the name of the ini file as a parameter to the constructor. If the file
does not exist, it is automatically created. You are then free to read values using the various read
methods, such as ReadString , ReadDate , ReadInteger , or ReadBool .
This is how we read the ini file of maXbox : maxboxdef.ini

procedure getMaxBoxIniShort;

begin

 with TIniFile.Create(ExePath+ 'maxboxdef.ini') do

 try

 except_conf:= ReadString('Form' , 'EXCEPTIONLOG' ,'');

 execute_conf:= ReadString('Form' , 'EXECUTESHELL' ,'');

 boot_conf:= ReadString('Form' , 'BOOTSCRIPT' ,'');

 ip_port:= ReadInteger('Web' , 'IPPORT' , 0);

 finally

 writeln('inifile sysdata1: ' +except_conf+ ':' +execute_conf);

 writeln('inifile sysdata2: ' +boot_conf+ ':' +intToStr(ip_port));

 Free;

 end;

end;

This process is handled directly, through an object so each time it changes timestamp of the file
also and not on demand.

���� In other words TIniFile works directly with the ini file on disk while TMemIniFile buffers all
changes in memory and does not write them to disk until you call the UpdateFile method.

Alternatively, if you want to read an entire section of the ini file, you can use the ReadSection
method. Similarly, you can write values using methods such as WriteBool , WriteInteger ,
WriteDate , or WriteString .

Each of the Read routines takes three parameters. The first parameter (Form in our example)
identifies the section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.

7

1.2 The Ini File
As you already know the object we now step through the meaning of the ini file. On subsequent
execution of maXbox, the ini values are read in when the form is created and written back out in
the OnClose and other “in between” events.

���� In maXbox you can also start with read only mode (Options/Save before Compile), so nothing
will be write on the disk.

//*** Definitions for maXbox mX3 ***
[FORM]
LAST_FILE=E:\maxbox\maxbox3\examples\140_drive_typedemo.txt //history up to 10 files
FONTSIZE=14
EXTENSION=txt
SCREENX=1386 //window size
SCREENY=1077
MEMHEIGHT=350
PRINTFONT=Courier New //GUI Settings
LINENUMBERS=Y
EXCEPTIONLOG=Y //store exceptions in log file – menu Debug/Show Last Exceptions
EXECUTESHELL=Y //prevents execution of ExecuteShell() or ExecuteCommand()
BOOTSCRIPT=Y //enabling load a boot script
MACRO=Y //put macros in your source header file
NAVIGATOR=Y //set the nav listbox at the right side of editor
MEMORYREPORT=Y //shows memory report on closing maXbox
[WEB]
IPPORT=8080 //for internal webserver – menu /Options/Add Ons/WebServer2
IPHOST=192.168.1.53
ROOTCERT=’filepathY’ //for use of HTTPS and certificates…
SCERT=’filepathY’
RSAKEY=’filepathY’
VERSIONCHECK=Y //checks over web the version

//V 3.9.8.9 also expand macros (see right below) in code e.g. #path or #file: and will cover below.

� Try to find out which line of the ini file shows the corresponding windings:?

����	
�
������	
�
������	
�
������	
�
��
	����
����	����
����	����
����	����
����
	����
����	����
����	����
����	����
����
�
������	
��
������	
��
������	
��
������	
�
☯���☯���☯���☯���

���� Now let’s take a look at the code of the memory report in the project file:

 Application.CreateForm(TMaxForm1, MaxForm1);

 if maxform1.STATMemoryReport = true then

 ReportMemoryLeaksOnShutdown:= true;

We name it, means the ini-file sets the STATMemoryReport true or false.

���� This example requires two objects from the classes: TMaxForm1 and TMemoryManager of
mX4 so the second one is from the well known VCL Lib .

8

This re includes a new memory manager that significantly improves start-up time, runtime speed,
and hyper threading performance.
If the ini-file doesn’t exist, renamed or damaged, maXbox produces a new one with the default
values. Test it by copy the maXbox3.exe in an empty directory; just says that a template file is
missing but it starts and will run!
If you only want to “install” a new maXbox with file or directory names, be sure the ini-file will not
be overwritten by unpacking the zip (so let’s make a copy before).
Maybe you just know that by starting the maXbox it checks on the internet the last version if the
ini-file allows this VERSIONCHECK=Y.

Another idea will be to compare with FTP the whole standard directory with your directory and
check if something on the configuration is missing or damaged. But I think that will going to far.
Something to keep in mind - there are literally hundreds of platform-specific directory listing
formats still being used by FTP servers on the Internet today.
The LIST command outlined in the original FTP specification, RFC 959, did not define any kind of
formatting to be used for listings, so systems were free to use whatever they wanted to use, and
they did do exactly that over the years. Windows and Unix formats are common, but they are not
required.
A formal listing format was not defined until RFC 3659 in the MLSD extension to FTP, which
replaces the old LIST command (TIdFTP.List() does use MLSD if the server supports it).

3: Another ini file Setting runs

Let’s do the last step with an include file. Under Include Files, list the files you want to include in a
script. A script can include a script from a file or from another unit. To include script from a file,
use the following code statement:

305_indy_elizahttpserver.TXT

{$I ..\maxbox3\examples\305_eliza_engine.INC}

����

If its not find a valid file it says:

9

>>> Fault : Unable to find file '..\maxbox3\example s\305_eliza_engined.INC'
used from 'E:\maxbox\maxbox3\maxbootscript_.txt'.

If you need to specify additional compiler options, you can invoke the compiler from the command
line with the Command Line Interface (CLI).

���� As you know, there’s a simple test to run the CLI out of the box with a ShellExecute () or a
similar RunFile () Command.

ShellExecute3(ExePath+'maxbox3.exe',ExePath+'exampl es\'+ascript,secmdopen);
ShellExecute3(ExePath+'maxbox3.exe',

 ExePath+'examples\003_pas_motion.txt',secmdopen);

A simple CLI is more relevant today than ever for scripting, and modern Shell implementations
such as maXbox or PowerShell have a lot to bring to the table.

4: More of Script Configuration

At pre last is to say you can use DLL’s too. Selecting this type of application sets up your project
as a DLL dependency, with the exported methods expected by the Library, e.g.:

43: procedure SetErrCode(ErrCode: Integer);external 'SetErrCode@dmath.dll';
{ Sets the error code }

function MyMessageBeep(para: integer): byte;
10: external 'MessageBeep@user32.dll stdcall';

� How can we show the run dialog?

10

procedure TForm1_FormCreateShowRunDialog;

var ShellApplication: Variant;

begin

 ShellApplication:= CreateOleObject('Shell.Application');

 ShellApplication.FileRun;

end;

Conclusion: There are two ways to install and configure your box into a directory you want. The
first way is to use the unzip command-line tool or IDE, which is discussed above. That means no
installation needed. Another way is to copy all the files to navigate to a folder you like, and then
simply drag and drop another scripts into the /examples directory
The only thing you need to backup is the ini file with your history or another root files that have
changed, otherwise the unzip IDE overwrites it.
Check your system environment with GetEnvironmentString :

 SaveString(ExePath+'\Examples\envinfo.txt',GetEnv ironmentString);
 OpenFile(ExePath+'\Examples\envinfo.txt');

1.3 The Macro
The only thing you need to know is to set the macros like #host: in your header or elsewhere in
a line, but not two or more on the same line when it expands with content:
Let’s have a look at the demo 369_macro_demo.txt

{** *****************

 * Project : Macro Demo

 * App Name: #file :369_macro_demo.txt

 * Purpose : Demonstrates the functions of macros in header

 * Date : 21/09/2010 - 14:56 - #date :01.06.2013 16:38:20

 * #path E:\maxbox\maxbox3\examples\

 * #file 369_macro_demo.txt

 * #perf -50:0:4.484

 * History : translate/implement to maXbox June 20 13, #name@max

 * : system demo for mX3, enhanced with ma cros, #locs :149

 ** ****************}

All macros are marked with red. One of my favour is #locs means lines of code and you get
always the certainty if something has changed by the numbers of line.
So the editor has a programmatic macro system which allows the pre compiler to be extended by
user code I would say user tags.
Below an internal extract from the help file All Functions List maxbox_functions_all.pdf :

//--
10181: //**************mX4 Macro Tags **
10182: //--
10183:
10184: #name, ı#date, ı#host, ı#path, ı#file, ı#head, ı#sign, ı#teach
10185:
10186: SearchAndCopy(memo1.lines, '#name' , getUserNameWin, 11);
10187: SearchAndCopy(memo1.lines, '#date' , datetimetoStr(now), 11);
10188: SearchAndCopy(memo1.lines, '#host' , getComputernameWin, 11);
10189: SearchAndCopy(memo1.lines, '#path' , fpath, 11);
10190: SearchAndCopy(memo1.lines, '#file' , fname, 11);
10191: SearchAndCopy(memo1.lines, '#locs' , intToStr(getCodeEnd), 11);
10192: SearchAndCopy(memo1.lines, '#perf' , perftime, 11);
10193: SearchAndCopy(memo1.lines, '#head' ,Format('%s: %s: %s %s ' ,
10194: [getUserNameWin, getComputernameWin, datetim etoStr(now), Act_Filename]), 11);

11

10195: SearchAndCopy(memo1.lines, ' #sign' ,Format('%s: %s: %s ' ,
 [getUserNameWin, getComputernameWin, datetim etoStr(now)]), 11);
10196: SearchAndCopy(memo1.lines, ' #tech' ,Format('perf: %s threads: %d %s %s' ,
 [perftime, numprocessthreads, getIPAddress(g etComputerNameWin),
timetoStr(time)]), 11);

����Some macros produce simple combinations of one liner tags but at least they replace the
content by reference in contrary to templates which just copy a content by value.

1.4 Build your own IDE
At last we go back to the magic boot script which will be the key to modify the IDE especially with
the inbuilt SynEdit API (since V3.9.8.9). What does it mean. It means you can change or rebuild
your IDE not just by fixed options or settings but also in a programmatic way in your boot script
without compilation!

Imagine you want to set a vertical red line on the gutter to the left:

 //memo1.Gutter.BorderColor:= clred; //---> reflection to box!
 //memo1.Gutter.ShowLineNumbers:= true; //---> reflection to box!

You simply put the line above on the boot script and make sure the ini file has it set to Yes.
BOOTSCRIPT=Y //enabling load a boot script

In combination with the Open Tools API you can tweak the GUI with new or change buttons,
events and behaviour for example:

 if extractFileName(maxform1.appname) = '370_synedit.txt' then begin

 Options:= +[eoShowSpecialChars];

 ActiveLineColor:= clyellow;

 maxform1.tbtnUseCase.caption:= 'SynScriptUC' ;

 maxform1.ShellStyle1Click(self)

 end else

 ActiveLineColor:= clgreen;

12

����Be aware that the internal representation of SynEdit TSynMemo at maXbox editor is always
memo1. and the console output as you know memo2.!, so don’t name an object var memo1
otherwise your script will show or jump to unexpected content.
More secure is the namespace

maxform1.memo1.font.size:= 14; instead of memo1.font.size:= 14;

with CL.AddClassN(CL.FindClass('TForm'), 'TMaxForm1') do begin
10230: ('memo2' , 'TMemo' , iptrw);
10231: ('memo1' , 'TSynMemo' , iptrw);

 maxform1.memo1.Options:= +[eoShowSpecialChars];
 maxform1.memo1. ActiveLineColor:= clyellow;

More examples at 370_synedit.txt and all the other changeable properties or methods you
find at the bottom of the help file <All Functions List> maxbox_functions_all.pdf

10197: //--
10198: //**************mX4 Public Tools API ***
10199: //--

//--
10702: file : unit uPSI_fMain.pas; OTAP Open Tools API Catalog
10703: // Those functions concern the editor and pr e-processor, all of the IDE
10704: Example: Call it with maxform1.Info1Click(se lf)
10705: Note: Call all Methods with maxForm1., e.g.:
10706: maxForm1.ShellStyle1Click(self);

You can also enhance the API with functions like the example above GetEnvironmentString:

function getEnvironmentString2: string;
var
 list: TStringList;
 i: Integer;
begin
 list:= TStringList.Create;
 try
 GetEnvironmentVars(list, False);
 for i:= 0 to list.Count- 1 do
 result:= result + list[i]+#13#10;
 finally
 list.Free;
 end;
end;

The Open Tools API is a collection of classes and functions of SynEdit and VCL components for
extending and enhancing the design and your editor environment.
Unlike other development tools, you use maXbox (Delphi) to extend maXbox. You don't need to
learn a new scripting language cause PascalScript works for you.
The Open Tools API puts you in control; reshape maXbox to match your needs.

13



Feedback: max@kleiner.com

Links of maXbox and DelphiWebStart:

http://www.softwareschule.ch/maxbox.htm

http://sourceforge.net/projects/maxbox

http://sourceforge.net/apps/mediawiki/maxbox/

http://sourceforge.net/projects/delphiwebstart

http://www.softwareschule.ch/maxbox_mainscreen.png

14

1.5 Appendix

EXAMPLE: List Objects

Working with Lists
The VCL/RTL includes many classes that represents lists or collections of items. They vary depending
on the types
of items they contain, what operations they support, and whether they are persistent.
The following table lists various list classes, and indicates the types of items they contain:
Object Maintains

TList A list of pointers
TThreadList A thread-safe list of pointers
TBucketList A hashed list of pointers
TObjectBucketList A hashed list of object instances
TObjectList A memory-managed list of object instances
TComponentList A memory-managed list of components (that is, instances of classes descended from
TComponent)
TClassList A list of class references
TInterfaceList A list of interface pointers.
TQueue A first-in first-out list of pointers
TStack A last-in first-out list of pointers
TObjectQueue A first-in first-out list of objects
TObjectStack A last-in first-out list of objects
TCollection Base class for many specialized classes of typed items.
TStringList A list of strings
THashedStringList A list of strings with the form Name=Value, hashed for performance.

The ProgID for each of the Shell objects is shown in the following table.

Object Function
TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components

TClassList A list of class references

TInterfaceList A list of interface pointers

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

