素数は無限にありますが、まだ素数自体は明らかなパターンが表示されない、またそれは素数を生成する任意の式が存在しません。実際には、ルジャンドルは常に素数を与える代数関数が存在しないことを証明します。
これは最初の会議で、彼が飽きてしまった1963年に物理学者スタニスワフ・ウラムによって気づき、数字のスパイラルをだらだら開始しました。彼は連続した整数のスパイラル、円のみ素数を行った場合、素数の不思議な斜めの "行"が出てくる、ということに気づきました。我々は直感的に素数のランダム分布を期待するので、これは非常に驚くべきことです。しかし、これらの斜めのセグメントは、印象的な大規模に発生し、任意に遠くスパイラルの中心部から。斜めのパスの一部を強調表示して、それは同じ画像であるに以下の画像は、約4000個の素数を含むスパイラル、次のです。大規模にこの現象を調べるために、Ulams素数スパイラルは設定カラーリングと他のオプションと、任意の大きな渦巻きを生成します。
コメントが見つかりません